IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i12p2225-2238.html
   My bibliography  Save this article

Evaluating the influence of crashes on driving risk using recurrent event models and Naturalistic Driving Study data

Author

Listed:
  • Chen Chen
  • Feng Guo

Abstract

Dramatic events such as crashes could alter driver behavior and change driving risk during post-event period. This study investigated the influence of crashes on driving risk using the 100-Car Naturalistic Driving Study data. The analysis is based on 51 crashes from primary drivers. Driving risk is measured by the intensity of safety-critical incidents (SCI) and near-crashes (NC), which typically occur at a high frequency both before and after a crash. We applied four alternative recurrent event models to evaluate the influence of crashes based on actual driving time. The driving period was divided into several phases based on the relationship to crashes, and the event intensities of these periods were compared. Results show a reduction in SCI intensity after the first crash ( $ {\rm intensity rate ratio} = 0.82 $ intensityrateratio=0.82; $ 95\% $ 95% CI $ [0.693, 0.971] $ [0.693,0.971]) and the second crash ( $ {\rm intensity rate ratio} = 0.47 $ intensityrateratio=0.47; $ 95\% $ 95% CI $ [0.377, 0.59] $ [0.377,0.59]) for male drivers. No significant response to the first crash was observed for females, but SCI intensity decreased after the second crash ( $ {\rm intensity rate ratio} = 0.43 $ intensityrateratio=0.43; $ 95\% $ 95% CI $ [0.342, 0.547] $ [0.342,0.547]). The findings of this study provide crucial information for understanding driver behavior and for developing effective safety education programs as well as safety counter measures.

Suggested Citation

  • Chen Chen & Feng Guo, 2016. "Evaluating the influence of crashes on driving risk using recurrent event models and Naturalistic Driving Study data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2225-2238, September.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:12:p:2225-2238
    DOI: 10.1080/02664763.2015.1134449
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1134449
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1134449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    2. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    4. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    5. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    6. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    7. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    8. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    9. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    10. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    11. Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
    12. Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.
    13. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    14. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    15. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    16. Sankaran, P.G. & Anisha, P., 2012. "Additive hazards models for gap time data with multiple causes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1454-1462.
    17. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    18. Chu-Chih Chen & , Chuan-Pin Lee & Yuan-Horng Yan & Tsun-Jen Cheng & Pranab K. Sen, 2021. "A partial likelihood-based two-dimensional multistate markov model with application to myocardial infarction and stroke recurrence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 282-303, November.
    19. Yevkin, Alexander & Krivtsov, Vasiliy, 2020. "A generalized model for recurrent failures prediction," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Chin-Tsang Chiang & Mei-Cheng Wang, 2009. "Varying-coefficient model for the occurrence rate function of recurrent events," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 197-213, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:12:p:2225-2238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.