IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i8p1830-1847.html
   My bibliography  Save this article

Classification of biomedical signals for differential diagnosis of Raynaud's phenomenon

Author

Listed:
  • Luigi Ippoliti
  • Simone Di Zio
  • Arcangelo Merla

Abstract

This paper discusses a supervised classification approach for the differential diagnosis of Raynaud's phenomenon (RP). The classification of data from healthy subjects and from patients suffering for primary and secondary RP is obtained by means of a set of classifiers derived within the framework of linear discriminant analysis. A set of functional variables and shape measures extracted from rewarming/reperfusion curves are proposed as discriminant features. Since the prediction of group membership is based on a large number of these features, the high dimension/small sample size problem is considered to overcome the singularity problem of the within-group covariance matrix. Results on a data set of 72 subjects demonstrate that a satisfactory classification of the subjects can be achieved through the proposed methodology.

Suggested Citation

  • Luigi Ippoliti & Simone Di Zio & Arcangelo Merla, 2014. "Classification of biomedical signals for differential diagnosis of Raynaud's phenomenon," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1830-1847, August.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:8:p:1830-1847
    DOI: 10.1080/02664763.2014.894002
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.894002
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.894002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Cheng & Cao, Longbing & Miao, Baiqi, 2013. "Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 140-149.
    2. Dhillon, Inderjit S. & Modha, Dharmendra S. & Spangler, W. Scott, 2002. "Class visualization of high-dimensional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 59-90, November.
    3. Duintjer Tebbens, Jurjen & Schlesinger, Pavel, 2007. "Improving implementation of linear discriminant analysis for the high dimension/small sample size problem," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 423-437, September.
    4. Jianqing Fan & Yang Feng & Xin Tong, 2012. "A road to classification in high dimensional space: the regularized optimal affine discriminant," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 745-771, September.
    5. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    6. Trendafilov, Nickolay T. & Vines, Karen, 2009. "Simple and interpretable discrimination," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 979-989, February.
    7. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nickolay T. Trendafilov & Tsegay Gebrehiwot Gebru, 2016. "Recipes for sparse LDA of horizontal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 207-221, August.
    2. Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
    3. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    4. Trendafilov, Nickolay T. & Vines, Karen, 2009. "Simple and interpretable discrimination," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 979-989, February.
    5. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    6. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    7. Luts, Jan & Molenberghs, Geert & Verbeke, Geert & Van Huffel, Sabine & Suykens, Johan A.K., 2012. "A mixed effects least squares support vector machine model for classification of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 611-628.
    8. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    9. Tengteng Xu & Riquan Zhang & Xiuzhen Zhang, 2023. "Estimation of spatial-functional based-line logit model for multivariate longitudinal data," Computational Statistics, Springer, vol. 38(1), pages 79-99, March.
    10. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    11. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    12. Tian, Tian Siva & James, Gareth M., 2013. "Interpretable dimension reduction for classifying functional data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 282-296.
    13. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    14. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    15. repec:cte:wsrepe:ws120906 is not listed on IDEAS
    16. Zhang, Xin & Jeske, Daniel R. & Li, Jun & Wong, Vance, 2016. "A sequential logistic regression classifier based on mixed effects with applications to longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 238-249.
    17. Baíllo, Amparo & Grané, Aurea, 2007. "Local linear regression for functional predictor and scalar response," DES - Working Papers. Statistics and Econometrics. WS ws076115, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Hans-Georg Müller & Ying Zhang, 2005. "Time-Varying Functional Regression for Predicting Remaining Lifetime Distributions from Longitudinal Trajectories," Biometrics, The International Biometric Society, vol. 61(4), pages 1064-1075, December.
    19. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    20. Geenens, Gery, 2015. "Moments, errors, asymptotic normality and large deviation principle in nonparametric functional regression," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 369-377.
    21. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:8:p:1830-1847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.