IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i8p1694-1707.html
   My bibliography  Save this article

A generalized linear model approach to seasonal aspects of wind speed modeling

Author

Listed:
  • Alain Bensoussan
  • Pierre Bertrand
  • Alexandre Brouste

Abstract

The aim of the article is to identify the intraday seasonality in a wind speed time series. Following the traditional approach, the marginal probability law is Weibull and, consequently, we consider seasonal Weibull law. A new estimation and decision procedure to estimate the seasonal Weibull law intraday scale parameter is presented. We will also give statistical decision-making tools to discard or not the trend parameter and to validate the seasonal model.

Suggested Citation

  • Alain Bensoussan & Pierre Bertrand & Alexandre Brouste, 2014. "A generalized linear model approach to seasonal aspects of wind speed modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1694-1707, August.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:8:p:1694-1707
    DOI: 10.1080/02664763.2014.888543
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.888543
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.888543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren'e Aid & Pierre Gruet & Huy^en Pham, 2015. "An optimal trading problem in intraday electricity markets," Papers 1501.04575, arXiv.org.
    2. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    3. René Aïd & Pierre Gruet & Huyên Pham, 2015. "An optimal trading problem in intraday electricity markets," Working Papers hal-01104829, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    2. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    3. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    4. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    5. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    6. Santos, E.C.O. & Guedes, E.F. & Zebende, G.F. & da Silva Filho, A.M., 2022. "Autocorrelation of wind speed: A sliding window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    8. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    9. Macleod, Alasdair, 2008. "Using the microclimate to optimise renewable energy installations," Renewable Energy, Elsevier, vol. 33(8), pages 1804-1813.
    10. Olatayo, Kunle Ibukun & Wichers, J. Harry & Stoker, Piet W., 2018. "Energy and economic performance of small wind energy systems under different climatic conditions of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 376-392.
    11. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    12. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    13. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    14. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    15. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Sant’Anna de Sousa Gomes, Mateus & Faulstich de Paiva, Jane Maria & Aparecida da Silva Moris, Virgínia & Nunes, Andréa Oliveira, 2019. "Proposal of a methodology to use offshore wind energy on the southeast coast of Brazil," Energy, Elsevier, vol. 185(C), pages 327-336.
    17. Peillón, Manuel & Sánchez, Raúl & Tarquis, Ana M. & García-Fernández, José L., 2013. "The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba," Agricultural Water Management, Elsevier, vol. 120(C), pages 107-114.
    18. Chao Long & Mohamed Emad A. Farrag & Donald M. Hepburn & Chengke Zhou, 2014. "Point Estimate Method for Voltage Unbalance Evaluation in Residential Distribution Networks with High Penetration of Small Wind Turbines," Energies, MDPI, vol. 7(11), pages 1-15, November.
    19. Estefania Artigao & Antonio Vigueras-Rodríguez & Andrés Honrubia-Escribano & Sergio Martín-Martínez & Emilio Gómez-Lázaro, 2021. "Wind Resource and Wind Power Generation Assessment for Education in Engineering," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    20. Chaouachi, Aymen & Covrig, Catalin Felix & Ardelean, Mircea, 2017. "Multi-criteria selection of offshore wind farms: Case study for the Baltic States," Energy Policy, Elsevier, vol. 103(C), pages 179-192.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:8:p:1694-1707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.