IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i10p2259-2274.html
   My bibliography  Save this article

Self-updating clustering algorithm for estimating the parameters in mixtures of von Mises distributions

Author

Listed:
  • Wen-Liang Hung
  • Shou-Jen Chang-Chien
  • Miin-Shen Yang

Abstract

The EM algorithm is the standard method for estimating the parameters in finite mixture models. Yang and Pan [25] proposed a generalized classification maximum likelihood procedure, called the fuzzy c -directions (FCD) clustering algorithm, for estimating the parameters in mixtures of von Mises distributions. Two main drawbacks of the EM algorithm are its slow convergence and the dependence of the solution on the initial value used. The choice of initial values is of great importance in the algorithm-based literature as it can heavily influence the speed of convergence of the algorithm and its ability to locate the global maximum. On the other hand, the algorithmic frameworks of EM and FCD are closely related. Therefore, the drawbacks of FCD are the same as those of the EM algorithm. To resolve these problems, this paper proposes another clustering algorithm, which can self-organize local optimal cluster numbers without using cluster validity functions. These numerical results clearly indicate that the proposed algorithm is superior in performance of EM and FCD algorithms. Finally, we apply the proposed algorithm to two real data sets.

Suggested Citation

  • Wen-Liang Hung & Shou-Jen Chang-Chien & Miin-Shen Yang, 2012. "Self-updating clustering algorithm for estimating the parameters in mixtures of von Mises distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(10), pages 2259-2274, June.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:10:p:2259-2274
    DOI: 10.1080/02664763.2012.706268
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.706268
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.706268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naderi, Mehrdad & Hung, Wen-Liang & Lin, Tsung-I & Jamalizadeh, Ahad, 2019. "A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum–Saunders distributions and its application to extrasolar planets," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 126-138.
    2. Said Benlakhdar & Mohammed Rziza & Rachid Oulad Haj Thami, 2022. "Statistical modeling of directional data using a robust hierarchical von mises distribution model: perspectives for wind energy," Computational Statistics, Springer, vol. 37(4), pages 1599-1619, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:10:p:2259-2274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.