IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i9p1845-1865.html
   My bibliography  Save this article

Missing data techniques for multilevel data: implications of model misspecification

Author

Listed:
  • Anne C. Black
  • Ofer Harel
  • D. Betsy McCoach

Abstract

When modeling multilevel data, it is important to accurately represent the interdependence of observations within clusters. Ignoring data clustering may result in parameter misestimation. However, it is not well established to what degree parameter estimates are affected by model misspecification when applying missing data techniques (MDTs) to incomplete multilevel data. We compare the performance of three MDTs with incomplete hierarchical data. We consider the impact of imputation model misspecification on the quality of parameter estimates by employing multiple imputation under assumptions of a normal model (MI/NM) with two-level cross-sectional data when values are missing at random on the dependent variable at rates of 10%, 30%, and 50%. Five criteria are used to compare estimates from MI/NM to estimates from MI assuming a linear mixed model (MI/LMM) and maximum likelihood estimation to the same incomplete data sets. With 10% missing data (MD), techniques performed similarly for fixed-effects estimates, but variance components were biased with MI/NM. Effects of model misspecification worsened at higher rates of MD, with the hierarchical structure of the data markedly underrepresented by biased variance component estimates. MI/LMM and maximum likelihood provided generally accurate and unbiased parameter estimates but performance was negatively affected by increased rates of MD.

Suggested Citation

  • Anne C. Black & Ofer Harel & D. Betsy McCoach, 2011. "Missing data techniques for multilevel data: implications of model misspecification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1845-1865, September.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1845-1865
    DOI: 10.1080/02664763.2010.529882
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2010.529882
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2010.529882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2018. "Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs," Journal of Educational and Behavioral Statistics, , vol. 43(3), pages 316-353, June.
    2. Brandon LeBeau & Yoon Ah Song & Wei Cheng Liu, 2018. "Model Misspecification and Assumption Violations With the Linear Mixed Model: A Meta-Analysis," SAGE Open, , vol. 8(4), pages 21582440188, December.
    3. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2016. "Multiple Imputation of Multilevel Missing Data," SAGE Open, , vol. 6(4), pages 21582440166, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1845-1865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.