IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i2p383-398.html
   My bibliography  Save this article

Detecting mean increases in Poisson INAR(1) processes with EWMA control charts

Author

Listed:
  • Christian H. Weiß

Abstract

Processes of serially dependent Poisson counts are commonly observed in real-world applications and can often be modeled by the first-order integer-valued autoregressive (INAR) model. For detecting positive shifts in the mean of a Poisson INAR(1) process, we propose the one-sided s exponentially weighted moving average (EWMA) control chart, which is based on a new type of rounding operation. The s-EWMA chart allows computing average run length (ARLs) exactly and efficiently with a Markov chain approach. Using an implementation of this procedure for ARL computation, the s-EWMA chart is easily designed, which is demonstrated with a real-data example. Based on an extensive study of ARLs, the out-of-control performance of the chart is analyzed and compared with that of a c chart and a one-sided cumulative sum (CUSUM) chart. We also investigate the robustness of the chart against departures from the assumed Poisson marginal distribution.

Suggested Citation

  • Christian H. Weiß, 2011. "Detecting mean increases in Poisson INAR(1) processes with EWMA control charts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 383-398, September.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:2:p:383-398
    DOI: 10.1080/02664760903406520
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664760903406520
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760903406520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keith Freeland, R. & McCabe, Brendan, 2005. "Asymptotic properties of CLS estimators in the Poisson AR(1) model," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 147-153, June.
    2. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    3. K. Poortema, 1999. "On modelling overdispersion of counts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 53(1), pages 5-20, March.
    4. Robert Jung & Gerd Ronning & A. Tremayne, 2005. "Estimation in conditional first order autoregression with discrete support," Statistical Papers, Springer, vol. 46(2), pages 195-224, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
    2. Claudia Kirch, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 270-275, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2022. "Bias-correction of some estimators in the INAR(1) process," Statistics & Probability Letters, Elsevier, vol. 187(C).
    2. Yao Rao & David Harris & Brendan McCabe, 2022. "A semi‐parametric integer‐valued autoregressive model with covariates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 495-516, June.
    3. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    4. Feike C. Drost & Ramon van den Akker & Bas J. M. Werker, 2009. "Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 467-485, April.
    5. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    6. Christian H. Weiß, 2013. "Integer-valued autoregressive models for counts showing underdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1931-1948, September.
    7. Weiß, Christian H. & Schweer, Sebastian, 2016. "Bias corrections for moment estimators in Poisson INAR(1) and INARCH(1) processes," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 124-130.
    8. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
    9. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
    10. Vladica S. Stojanović & Hassan S. Bakouch & Eugen Ljajko & Najla Qarmalah, 2023. "Zero-and-One Integer-Valued AR(1) Time Series with Power Series Innovations and Probability Generating Function Estimation Approach," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    11. Jonas Andersson & Dimitris Karlis, 2010. "Treating missing values in INAR(1) models: An application to syndromic surveillance data," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 12-19, January.
    12. Han Li & Kai Yang & Shishun Zhao & Dehui Wang, 2018. "First-order random coefficients integer-valued threshold autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 305-331, July.
    13. Christian H. Weiß, 2012. "Fully observed INAR(1) processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 581-598, July.
    14. Miroslav M. Ristić & Aleksandar S. Nastić & Ana V. Miletić Ilić, 2013. "A geometric time series model with dependent Bernoulli counting series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 466-476, July.
    15. Christian H. Weiß & Annika Homburg & Pedro Puig, 2019. "Testing for zero inflation and overdispersion in INAR(1) models," Statistical Papers, Springer, vol. 60(3), pages 823-848, June.
    16. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    17. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    18. Kachour Maher & Bakouch Hassan S. & Mohammadi Zohreh, 2023. "A New INAR(1) Model for ℤ-Valued Time Series Using the Relative Binomial Thinning Operator," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 243(2), pages 125-152, April.
    19. Christian Weiss, 2009. "Monitoring correlated processes with binomial marginals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(4), pages 399-414.
    20. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:2:p:383-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.