IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v243y2023i2p125-152n3.html
   My bibliography  Save this article

A New INAR(1) Model for ℤ-Valued Time Series Using the Relative Binomial Thinning Operator

Author

Listed:
  • Kachour Maher

    (ESSCA School of Management, Lyon, France)

  • Bakouch Hassan S.

    (Department of Mathematics, College of Science, Qassim University, Buraydah, Saudi Arabia)

  • Mohammadi Zohreh

    (Department of Statistics, Jahrom University, Jahrom, Iran)

Abstract

A new first-order integer-valued autoregressive process (INAR(1)) with extended Poisson innovations is introduced based on a signed version of the thinning operator, called relative binomial thinning operator, which can be considered as an extension of standard binomial thinning operator introduced by Steutel, F.W. and van Harn, K. (1979. Discrete analogues of self-decomposability and stability. Ann. Probab. 7: 893–899). It is appropriate for modeling Z $\mathbb{Z}$ -valued time series and either positive or negative correlations. Some properties of the process are established. Conditional least squares, Yule–Walker and conditional maximum likelihood methods are considered for the parameter estimation of the model. Moreover, simulation experiments are carried out to attest to the performance of the estimation methods. The applicability of the proposed model is investigated through a practical data set of the Saudi stock market.

Suggested Citation

  • Kachour Maher & Bakouch Hassan S. & Mohammadi Zohreh, 2023. "A New INAR(1) Model for ℤ-Valued Time Series Using the Relative Binomial Thinning Operator," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 243(2), pages 125-152, April.
  • Handle: RePEc:jns:jbstat:v:243:y:2023:i:2:p:125-152:n:3
    DOI: 10.1515/jbnst-2022-0059
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2022-0059
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jbnst-2022-0059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hee-Young Kim & Yousung Park, 2008. "A non-stationary integer-valued autoregressive model," Statistical Papers, Springer, vol. 49(3), pages 485-502, July.
    2. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    3. Hassan S. Bakouch & Maher Kachour & Saralees Nadarajah, 2016. "An extended Poisson distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(22), pages 6746-6764, November.
    4. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    5. R. Freeland, 2010. "True integer value time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 217-229, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner Barreto-Souza & Marcelo Bourguignon, 2015. "A skew INAR(1) process on $${\mathbb {Z}}$$ Z," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 189-208, April.
    2. Giulia Carallo & Roberto Casarin & Christian P. Robert, 2020. "Generalized Poisson Difference Autoregressive Processes," Papers 2002.04470, arXiv.org.
    3. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    4. Shirozhan, M. & Bakouch, Hassan S. & Mohammadpour, M., 2023. "A flexible INAR(1) time series model with dependent zero-inflated count series and medical contagious cases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 216-230.
    5. Yousung Park & Hee-Young Kim, 2012. "Diagnostic checks for integer-valued autoregressive models using expected residuals," Statistical Papers, Springer, vol. 53(4), pages 951-970, November.
    6. Han Li & Kai Yang & Dehui Wang, 2017. "Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes," Computational Statistics, Springer, vol. 32(4), pages 1597-1620, December.
    7. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    8. Luisa Bisaglia & Margherita Gerolimetto, 2019. "Model-based INAR bootstrap for forecasting INAR(p) models," Computational Statistics, Springer, vol. 34(4), pages 1815-1848, December.
    9. Federico Bassetti & Giulia Carallo & Roberto Casarin, 2022. "First-order integer-valued autoregressive processes with Generalized Katz innovations," Papers 2202.02029, arXiv.org.
    10. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    11. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
    12. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    13. Christian Weiss, 2009. "Monitoring correlated processes with binomial marginals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(4), pages 399-414.
    14. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    15. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    16. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    17. Tyler Roick & Dimitris Karlis & Paul D. McNicholas, 2021. "Clustering discrete-valued time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 209-229, March.
    18. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    19. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    20. Annika Homburg & Christian H. Weiß & Gabriel Frahm & Layth C. Alwan & Rainer Göb, 2021. "Analysis and Forecasting of Risk in Count Processes," JRFM, MDPI, vol. 14(4), pages 1-25, April.

    More about this item

    Keywords

    time series; signed thinning operator; extended Poisson distribution; simulation; Pearson residuals;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:243:y:2023:i:2:p:125-152:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.