IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v34y2007i9p1019-1034.html
   My bibliography  Save this article

A Bayesian Adjustment for Covariate Misclassification with Correlated Binary Outcome Data

Author

Listed:
  • Dianxu Ren
  • Roslyn Stone

Abstract

Estimated associations between an outcome variable and misclassified covariates tend to be biased when the methods of estimation that ignore the classification error are applied. Available methods to account for misclassification often require the use of a validation sample (i.e. a gold standard). In practice, however, such a gold standard may be unavailable or impractical. We propose a Bayesian approach to adjust for misclassification in a binary covariate in the random effect logistic model when a gold standard is not available. This Markov Chain Monte Carlo (MCMC) approach uses two imperfect measures of a dichotomous exposure under the assumptions of conditional independence and non-differential misclassification. A simulated numerical example and a real clinical example are given to illustrate the proposed approach. Our results suggest that the estimated log odds of inpatient care and the corresponding standard deviation are much larger in our proposed method compared with the models ignoring misclassification. Ignoring misclassification produces downwardly biased estimates and underestimate uncertainty.

Suggested Citation

  • Dianxu Ren & Roslyn Stone, 2007. "A Bayesian Adjustment for Covariate Misclassification with Correlated Binary Outcome Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1019-1034.
  • Handle: RePEc:taf:japsta:v:34:y:2007:i:9:p:1019-1034
    DOI: 10.1080/02664760701591895
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760701591895
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760701591895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    2. Hyejin KO & Marie Davidian, 2000. "Correcting for Measurement Error in Individual-Level Covariates in Nonlinear Mixed Effects Models," Biometrics, The International Biometric Society, vol. 56(2), pages 368-375, June.
    3. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beavers, Daniel P. & Stamey, James D., 2012. "Bayesian sample size determination for binary regression with a misclassified covariate and no gold standard," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2574-2582.
    2. James D. Stamey & Daniel P. Beavers & Michael E. Sherr, 2017. "Bayesian Analysis and Design for Joint Modeling of Two Binary Responses With Misclassification," Sociological Methods & Research, , vol. 46(4), pages 772-792, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dianxu & Stone, Roslyn A., 2007. "A Bayesian approach for analyzing a cluster-randomized trial with adjustment for risk misclassification," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5507-5518, August.
    2. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    3. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    4. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    5. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    6. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    7. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    8. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    9. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    10. Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.
    11. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    12. Ralf van der Lans & Bram Van den Bergh & Evelien Dieleman, 2014. "Partner Selection in Brand Alliances: An Empirical Investigation of the Drivers of Brand Fit," Marketing Science, INFORMS, vol. 33(4), pages 551-566, July.
    13. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    14. Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.
    15. Terence D.Agbeyegbe & Elena Goldman, 2005. "Estimation of threshold time series models using efficient jump MCMC," Economics Working Paper Archive at Hunter College 406, Hunter College Department of Economics, revised 2005.
    16. Ockerman, Daniel H. & Goldsman, David, 1999. "Student t-tests and compound tests to detect transients in simulated time series," European Journal of Operational Research, Elsevier, vol. 116(3), pages 681-691, August.
    17. Hong, Yi & Jin, Xing, 2022. "Pricing of variance swap rates and investment decisions of variance swaps: Evidence from a three-factor model," European Journal of Operational Research, Elsevier, vol. 303(2), pages 975-985.
    18. Shofiqul Islam & Sonia Anand & Jemila Hamid & Lehana Thabane & Joseph Beyene, 2020. "A copula-based method of classifying individuals into binary disease categories using dependent biomarkers," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 871-897, December.
    19. da-Silva, C.Q. & Gomes, A.E., 2011. "Bayesian inference for an item response model for modeling test anxiety," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3165-3182, December.
    20. Marie Albertine Djuikom, 2018. "Incentives to labour migration and agricultural productivity: The Bayesian perspective," WIDER Working Paper Series wp-2018-45, World Institute for Development Economic Research (UNU-WIDER).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:34:y:2007:i:9:p:1019-1034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.