IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v34y2007i1p11-21.html
   My bibliography  Save this article

Mixture Multi-state Markov Regression Model

Author

Listed:
  • Amy Ming-Fang Yen
  • Tony Hsiu-Hsi Chen

Abstract

Although heterogeneity across individuals may be reduced when a two-state process is extended into a multi-state process, the discrepancy between the observed and the predicted for some states may still exist owing to two possibilities, unobserved mixture distribution in the initial state and the effect of measured covariates on subsequent multi-state disease progression. In the present study, we developed a mixture Markov exponential regression model to take account of the above-mentioned heterogeneity across individuals (subject-to-subject variability) with a systematic model selection based on the likelihood ratio test. The model was successfully demonstrated by an empirical example on surveillance of patients with small hepatocellular carcinoma treated by non-surgical methods. The estimated results suggested that the model with the incorporation of unobserved mixture distribution behaves better than the one without. Complete and partial effects regarding risk factors on different subsequent multi-state transitions were identified using a homogeneous Markov model. The combination of both initial mixture distribution and homogeneous Markov exponential regression model makes a significant contribution to reducing heterogeneity across individuals and over time for disease progression.

Suggested Citation

  • Amy Ming-Fang Yen & Tony Hsiu-Hsi Chen, 2007. "Mixture Multi-state Markov Regression Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 11-21.
  • Handle: RePEc:taf:japsta:v:34:y:2007:i:1:p:11-21
    DOI: 10.1080/02664760600994711
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760600994711
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760600994711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ira M. Longini & M. Elizabeth Halloran, 1996. "A Frailty Mixture Model for Estimating Vaccine Efficacy," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(2), pages 165-173, June.
    2. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. A. Hubbard & X. H. Zhou, 2011. "A comparison of non-homogeneous Markov regression models with application to Alzheimer's disease progression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2313-2326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Wienke & Paul Lichtenstein & Anatoli I. Yashin, 2003. "Unobserved heterogeneity in a model with cure fraction applied to breast cancer," MPIDR Working Papers WP-2003-010, Max Planck Institute for Demographic Research, Rostock, Germany.
    2. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    3. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    4. K. Motarjem & M. Mohammadzadeh & A. Abyar, 2020. "Geostatistical survival model with Gaussian random effect," Statistical Papers, Springer, vol. 61(1), pages 85-107, February.
    5. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    6. Annamaria Olivieri & Ermanno Pitacco, 2016. "Frailty and Risk Classification for Life Annuity Portfolios," Risks, MDPI, vol. 4(4), pages 1-23, October.
    7. James W. Vaupel, 2002. "Post-Darwinian longevity," MPIDR Working Papers WP-2002-043, Max Planck Institute for Demographic Research, Rostock, Germany.
    8. Maxim S. Finkelstein, 2005. "Shocks in homogeneous and heterogeneous populations," MPIDR Working Papers WP-2005-024, Max Planck Institute for Demographic Research, Rostock, Germany.
    9. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    10. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    11. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    12. Hui Zheng, 2014. "Aging in the Context of Cohort Evolution and Mortality Selection," Demography, Springer;Population Association of America (PAA), vol. 51(4), pages 1295-1317, August.
    13. Susmita Datta & M. Elizabeth Halloran & Ira M. Longini Jr, 1999. "Efficiency of Estimating Vaccine Efficacy for Susceptibility and Infectiousness: Randomization by Individual Versus Household," Biometrics, The International Biometric Society, vol. 55(3), pages 792-798, September.
    14. Graziella Caselli & Franco Peracchi & Elisabetta Barbi & Rosa Maria Lipsi, 2003. "Differential Mortality and the Design of the Italian System of Public Pensions," LABOUR, CEIS, vol. 17(s1), pages 45-78, August.
    15. Enrique Acosta & Alain Gagnon & Nadine Ouellette & Robert R. Bourbeau & Marilia R. Nepomuceno & Alyson A. van Raalte, 2020. "The boomer penalty: excess mortality among baby boomers in Canada and the United States," MPIDR Working Papers WP-2020-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    16. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    17. Hess Wolfgang & Tutz Gerhard & Gertheiss Jan, 2016. "A Flexible Link Function for Discrete-Time Duration Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(4), pages 455-481, August.
    18. Bas Klaauw & Limin Wang, 2011. "Child mortality in rural India," Journal of Population Economics, Springer;European Society for Population Economics, vol. 24(2), pages 601-628, April.
    19. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    20. Xian Liu, 2000. "Development of a Structural Hazard Rate Model in Sociological Research," Sociological Methods & Research, , vol. 29(1), pages 77-117, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:34:y:2007:i:1:p:11-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.