IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v30y2003i1p87-100.html
   My bibliography  Save this article

Bayesian modelling of spatial compositional data

Author

Listed:
  • Håkon Tjelmeland
  • Kjetill Vassmo Lund

Abstract

Compositional data are vectors of proportions, specifying fractions of a whole. Aitchison (1986) defines logistic normal distributions for compositional data by applying a logistic transformation and assuming the transformed data to be multi- normal distributed. In this paper we generalize this idea to spatially varying logistic data and thereby define logistic Gaussian fields. We consider the model in a Bayesian framework and discuss appropriate prior distributions. We consider both complete observations and observations of subcompositions or individual proportions, and discuss the resulting posterior distributions. In general, the posterior cannot be analytically handled, but the Gaussian base of the model allows us to define efficient Markov chain Monte Carlo algorithms. We use the model to analyse a data set of sediments in an Arctic lake. These data have previously been considered, but then without taking the spatial aspect into account.

Suggested Citation

  • Håkon Tjelmeland & Kjetill Vassmo Lund, 2003. "Bayesian modelling of spatial compositional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(1), pages 87-100.
  • Handle: RePEc:taf:japsta:v:30:y:2003:i:1:p:87-100
    DOI: 10.1080/0266476022000018547
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0266476022000018547
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0266476022000018547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Haslett & M. Whiley & S. Bhattacharya & M. Salter‐Townshend & Simon P. Wilson & J. R. M. Allen & B. Huntley & F. J. G. Mitchell, 2006. "Bayesian palaeoclimate reconstruction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 395-438, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:30:y:2003:i:1:p:87-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.