IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v26y1999i4p435-446.html
   My bibliography  Save this article

Robustness of partial least-squares method for estimating latent variable quality structures

Author

Listed:
  • Claes Cassel
  • Peter Hackl
  • Anders Westlund

Abstract

Latent variable structural models and the partial least-squares (PLS) estimation procedure have found increased interest since being used in the context of customer satisfaction measurement. The well-known property that the estimates of the inner structure model are inconsistent implies biased estimates for finite sample sizes. A simplified version of the structural model that is used for the Swedish Customer Satisfaction Index (SCSI) system has been used to generate simulated data and to study the PLS algorithm in the presence of three inadequacies: (i) skew instead of symmetric distributions for manifest variables; (ii) multi-collinearity within blocks of manifest and between latent variables; and (iii) misspecification of the structural model (omission of regressors). The simulation results show that the PLS method is quite robust against these inadequacies. The bias that is caused by the inconsistency of PLS estimates is substantially increased only for extremely skewed distributions and for the erroneous omission of a highly relevant latent regressor variable. The estimated scores of the latent variables are always in very good agreement with the true values and seem to be unaffected by the inadequacies under investigation.

Suggested Citation

  • Claes Cassel & Peter Hackl & Anders Westlund, 1999. "Robustness of partial least-squares method for estimating latent variable quality structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 435-446.
  • Handle: RePEc:taf:japsta:v:26:y:1999:i:4:p:435-446
    DOI: 10.1080/02664769922322
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664769922322
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664769922322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dijkstra, Theo, 1983. "Some comments on maximum likelihood and partial least squares methods," Journal of Econometrics, Elsevier, vol. 22(1-2), pages 67-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.
    2. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    3. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021. "Modelling non-stationary ‘Big Data’," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1556-1575.
    4. Albert Satorra, 1989. "Alternative test criteria in covariance structure analysis: A unified approach," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 131-151, March.
    5. Florian Schuberth & Jörg Henseler & Theo K. Dijkstra, 2018. "Partial least squares path modeling using ordinal categorical indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 9-35, January.
    6. Shmueli, Galit & Ray, Soumya & Velasquez Estrada, Juan Manuel & Chatla, Suneel Babu, 2016. "The elephant in the room: Predictive performance of PLS models," Journal of Business Research, Elsevier, vol. 69(10), pages 4552-4564.
    7. Nitzl, Christian, 2016. "The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: Directions for future theory development," Journal of Accounting Literature, Elsevier, vol. 37(C), pages 19-35.
    8. Mourad, Siham & Valette-Florence, Pierre, 2016. "Improving prediction with POS and PLS consistent estimations: An illustration," Journal of Business Research, Elsevier, vol. 69(10), pages 4675-4684.
    9. Kondylis, Athanassios & Hadi, Ali S., 2006. "Derived components regression using the BACON algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 556-569, November.
    10. Sohn, So Young & Han, Hong Kyu & Jeon, Hye Jin, 2007. "Development of an Air Force Warehouse Logistics Index to continuously improve logistics capabilities," European Journal of Operational Research, Elsevier, vol. 183(1), pages 148-161, November.
    11. Rodgers, Waymond, 1999. "The influences of conflicting information on novices and loan officers' actions," Journal of Economic Psychology, Elsevier, vol. 20(2), pages 123-145, April.
    12. P. Bentler, 1983. "Some contributions to efficient statistics in structural models: Specification and estimation of moment structures," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 493-517, December.
    13. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    14. Dan A. Black & Jeffrey A. Smith, 2006. "Estimating the Returns to College Quality with Multiple Proxies for Quality," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 701-728, July.
    15. Andreas Herrmann & Frank Huber & Frank Kressmann, 2006. "Varianz- und kovarianzbasierte Strukturgleichungsmodelle — Ein Leitfaden zu deren Spezifikation, Schätzung und Beurteilung," Schmalenbach Journal of Business Research, Springer, vol. 58(1), pages 34-66, February.
    16. Coenders, Germà & Bisbe, Josep & Saris, Willem E. & Batista-Foguet, Joan M., 2003. "Moderating Effects of Management Control Systems and Innovation on Performance. Simple Methods for Correcting the Effects of Measurement Error for Interaction Effects in Small Samples," Working Papers of the Department of Economics, University of Girona 7, Department of Economics, University of Girona.
    17. Yoshikawa, Toru & Phan, Phillip H. & Linton, Jonathan, 2004. "The relationship between governance structure and risk management approaches in Japanese venture capital firms," Journal of Business Venturing, Elsevier, vol. 19(6), pages 831-849, November.
    18. O'Loughlin, Christina & Coenders, Germà, 2002. "Application of the European Customer Satisfaction Index to Postal Services. Structural Equation Models versus Partial Least Squares," Working Papers of the Department of Economics, University of Girona 4, Department of Economics, University of Girona.
    19. Reinartz, Werner & Haenlein, Michael & Henseler, Jörg, 2009. "An empirical comparison of the efficacy of covariance-based and variance-based SEM," International Journal of Research in Marketing, Elsevier, vol. 26(4), pages 332-344.
    20. Hildebrandt, Lutz & Temme, Dirk, 2006. "Formative measurement models in covariance structure analysis: Specification and identification," SFB 649 Discussion Papers 2006-083, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:26:y:1999:i:4:p:435-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.