Employing Google Trends and Deep Learning in Forecasting Financial Market Turbulence
Author
Abstract
Suggested Citation
DOI: 10.1080/15427560.2021.1913160
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guillaume Belly & Lukas Boeckelmann & Carlos Mateo Caicedo Graciano & Alberto Di Iorio & Klodiana Istrefi & Vasileios Siakoulis & Arthur Stalla‐Bourdillon, 2023.
"Forecasting sovereign risk in the Euro area via machine learning,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 657-684, April.
- Guillaume Belly & Lukas Boeckelmann & Carlos Mateo Caicedo Graciano & Alberto Di Iorio & Klodiana Istrefi & Vasileios Siakoulis & Arthur Stalla-Bourdillon, 2023. "Forecasting sovereign risk in the Euro area via machine learning," Post-Print hal-04459577, HAL.
- Tang, Pan & Xu, Wei & Wang, Haosen, 2024. "Network-Based prediction of financial cross-sector risk spillover in China: A deep learning approach," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Yuqian Zhang, 2023. "Using Google Trends to track the global interest in International Financial Reporting Standards: Evidence from big data," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 30(2), pages 87-100, April.
- Chang, Victor & Hahm, Nattareya & Xu, Qianwen Ariel & Vijayakumar, P. & Liu, Ling, 2024. "Towards data and analytics driven B2B-banking for green finance: A cross-selling use case study," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:hbhfxx:v:23:y:2022:i:3:p:353-365. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/hbhf .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.