IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v32y2020i2p510-533.html
   My bibliography  Save this article

Data-driven local polynomial for the trend and its derivatives in economic time series

Author

Listed:
  • Yuanhua Feng
  • Thomas Gries
  • Marlon Fritz

Abstract

The main purpose of this paper is the development of data-driven iterative plug-in algorithms for local polynomial estimation of the trend and its derivatives under dependent errors. Furthermore, a data-driven lag-window estimator for the variance factor in the bandwidth is proposed so that the nonparametric stage is carried out without any parametric assumption on the stationary errors. Analysis of the residuals using an ARMA model is further discussed. Moreover, some computational features of the data-driven algorithms are discussed in detail. Practical performance of the proposals is confirmed by a simulation study and a comparative study, and illustrated by quarterly US GDP and labour force data. An R package called ‘smoots’ (smoothing time series) for smoothing the trend and its derivatives in short-memory time series is developed based on the proposals of this paper.

Suggested Citation

  • Yuanhua Feng & Thomas Gries & Marlon Fritz, 2020. "Data-driven local polynomial for the trend and its derivatives in economic time series," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(2), pages 510-533, April.
  • Handle: RePEc:taf:gnstxx:v:32:y:2020:i:2:p:510-533
    DOI: 10.1080/10485252.2020.1759598
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2020.1759598
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2020.1759598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Letmathe, 2022. "Data-driven P-Splines under short-range dependence," Working Papers CIE 152, Paderborn University, CIE Center for International Economics.
    2. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 125, Paderborn University, CIE Center for International Economics.
    4. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 122, Paderborn University, CIE Center for International Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:32:y:2020:i:2:p:510-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.