IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v30y2018i1p1-27.html
   My bibliography  Save this article

Improved local polynomial estimation in time series regression

Author

Listed:
  • Juliane Geller
  • Michael H. Neumann

Abstract

We propose a modification of local polynomial estimation which improves the efficiency of the conventional method when the observation errors are correlated. The procedure is based on a pre-transformation of the data as a generalization of the pre-whitening procedure introduced by Xiao et al. [(2003), ‘More Efficient Local Polynomial Estimation in Nonparametric Regression with Autocorrelated Errors’, Journal of the American Statistical Association, 98, 980–992]. While these authors assumed a linear process representation for the error process, we avoid any structural assumption. We further allow the regressors and the errors to be dependent. More importantly, we show that the inclusion of both leading and lagged variables in the approximation of the error terms outperforms the best approximation based on lagged variables only. Establishing its asymptotic distribution, we show that the proposed estimator is more efficient than the standard local polynomial estimator. As a by-product we prove a suitable version of a central limit theorem which allows us to improve the asymptotic normality result for local polynomial estimators by Masry and Fan [(1997), ‘Local Polynomial Estimation of Regression Functions for Mixing Processes’, Scandinavian Journal of Statistics, 24, 165–179]. A simulation study confirms the efficiency of our estimator on finite samples. An application to climate data also shows that our new method leads to an estimator with decreased variability.

Suggested Citation

  • Juliane Geller & Michael H. Neumann, 2018. "Improved local polynomial estimation in time series regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-27, January.
  • Handle: RePEc:taf:gnstxx:v:30:y:2018:i:1:p:1-27
    DOI: 10.1080/10485252.2017.1402118
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2017.1402118
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2017.1402118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martins-Filho, Carlos & Yao, Feng, 2009. "Nonparametric regression estimation with general parametric error covariance," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 309-333, March.
    2. Linton, Oliver B. & Mammen, Enno, 2008. "Nonparametric transformation to white noise," Journal of Econometrics, Elsevier, vol. 142(1), pages 241-264, January.
    3. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    4. Xiao Z. & Linton O.B. & Carroll R.J. & Mammen E., 2003. "More Efficient Local Polynomial Estimation in Nonparametric Regression With Autocorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 980-992, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2021. "Short-Term Exuberance and Long-Term Stability: A Simultaneous Optimization of Stock Return Predictions for Short and Long Horizons," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    2. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    3. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    4. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    5. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2019. "Machine Learning for Forecasting Excess Stock Returns The Five-Year-View," Graz Economics Papers 2019-06, University of Graz, Department of Economics.
    6. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Short-Term Exuberance and long-term stability: A simultaneous optimization of stock return predictions for short and long horizons," Graz Economics Papers 2020-20, University of Graz, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liangjun Su & Aman Ullah & Yun Wang, 2013. "Nonparametric regression estimation with general parametric error covariance: a more efficient two-step estimator," Empirical Economics, Springer, vol. 45(2), pages 1009-1024, October.
    2. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2021. "Short-Term Exuberance and Long-Term Stability: A Simultaneous Optimization of Stock Return Predictions for Short and Long Horizons," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    3. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    4. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    5. Alan T. K. Wan & Jinhong You & Riquan Zhang, 2016. "A Seemingly Unrelated Nonparametric Additive Model with Autoregressive Errors," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 894-928, May.
    6. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    7. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    8. Deniz Ozabaci & Daniel Henderson, 2015. "Additive kernel estimates of returns to schooling," Empirical Economics, Springer, vol. 48(1), pages 227-251, February.
    9. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Short-Term Exuberance and long-term stability: A simultaneous optimization of stock return predictions for short and long horizons," Graz Economics Papers 2020-20, University of Graz, Department of Economics.
    10. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    11. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    12. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    13. Liebscher, Eckhard, 2003. "Strong convergence of estimators in nonlinear autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 247-261, February.
    14. Ke Yang, 2013. "An Improved Local-linear Estimator For Nonparametric Regression With Autoregressive Errors," Economics Bulletin, AccessEcon, vol. 33(1), pages 19-27.
    15. Karlsen, Hans Arnfinn & Tjostheim, Dag, 1998. "Nonparametric estimation in null recurrent times series," SFB 373 Discussion Papers 1998,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    17. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    18. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Estimation of Generalized Impulse Response Functions," Econometric Society World Congress 2000 Contributed Papers 1417, Econometric Society.
    19. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    20. Fakoor, V., 2010. "Strong uniform consistency of kernel density estimators under a censored dependent model," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 318-323, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:30:y:2018:i:1:p:1-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.