IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v29y2017i2p447-475.html
   My bibliography  Save this article

Discontinuities in robust nonparametric regression with α-mixing dependence

Author

Listed:
  • Marie Hušková
  • Matúš Maciak

Abstract

The main idea of the paper is to introduce a robust regression estimation method under an α-mixing dependence assumption, staying free of any parametric model restrictions while also allowing for some sudden changes in the unknown regression function. The sudden changes in the model may correspond to discontinuity points (jumps) or higher order breaks (jumps in corresponding derivatives) as well. We firstly derive some important statistical properties for local polynomial M-smoother estimates and we will propose a statistical test to decide whether some given point of interest is significantly important for a change to occur or not. As the asymptotic distribution of the test statistic depends on quantities which are left unknown we also introduce a bootstrap algorithm which can be used to mimic the target distribution of interest. All necessary proofs are provided together with some experimental results from a simulation study and a real data example.

Suggested Citation

  • Marie Hušková & Matúš Maciak, 2017. "Discontinuities in robust nonparametric regression with α-mixing dependence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 447-475, April.
  • Handle: RePEc:taf:gnstxx:v:29:y:2017:i:2:p:447-475
    DOI: 10.1080/10485252.2017.1303061
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2017.1303061
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2017.1303061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baek, Jangsun & Wehrly, Thomas E., 1993. "Kernel estimation for additive models under dependence," Stochastic Processes and their Applications, Elsevier, vol. 47(1), pages 95-112, August.
    2. Shan Sun & Ching-Yuan Chiang, 1997. "Limiting behavior of the perturbed empirical distribution functions evaluated at U -statistics for strongly mixing sequences of random variables," International Journal of Stochastic Analysis, Hindawi, vol. 10, pages 1-18, January.
    3. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    4. Lee, Jong Soo & Cox, Dennis D., 2010. "Robust smoothing: Smoothing parameter selection and applications to fluorescence spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3131-3143, December.
    5. Boente, G. & Fraiman, R., 1995. "Asymptotic Distribution of Smoothers Based on Local Means and Local Medians under Dependence," Journal of Multivariate Analysis, Elsevier, vol. 54(1), pages 77-90, July.
    6. Gao, Jiti & Gijbels, Irene & Van Bellegem, Sebastien, 2008. "Nonparametric simultaneous testing for structural breaks," Journal of Econometrics, Elsevier, vol. 143(1), pages 123-142, March.
    7. Delgado, Miguel A. & Hidalgo, Javier, 2000. "Nonparametric inference on structural breaks," Journal of Econometrics, Elsevier, vol. 96(1), pages 113-144, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Porter, Jack & Yu, Ping, 2015. "Regression discontinuity designs with unknown discontinuity points: Testing and estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 132-147.
    2. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    3. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    4. Daniel J. Henderson & Christopher F. Parmeter & Liangjun Su, 2017. "M-Estimation of a Nonparametric Threshold Regression Model," Working Papers 2017-15, University of Miami, Department of Economics.
    5. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    6. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    7. Fiteni, Inmaculada, 2004. "[tau]-estimators of regression models with structural change of unknown location," Journal of Econometrics, Elsevier, vol. 119(1), pages 19-44, March.
    8. aus dem Moore, Jan Peter & Spitz-Oener, Alexandra, 2012. "Bye bye, GI: The impact of the US military drawdown on local German labor markets," SFB 649 Discussion Papers 2012-024, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    10. Gao, Jiti & Gijbels, Irene & Van Bellegem, Sebastien, 2008. "Nonparametric simultaneous testing for structural breaks," Journal of Econometrics, Elsevier, vol. 143(1), pages 123-142, March.
    11. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    12. Bravo, Francesco & Crudu, Federico, 2012. "Efficient bootstrap with weakly dependent processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3444-3458.
    13. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    14. Gonçalves, Sílvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1367-1384, December.
    15. Peter Egger & Christian Keuschnigg & Valeria Merlo & Georg Wamser, 2014. "Corporate Taxes and Internal Borrowing within Multinational Firms," American Economic Journal: Economic Policy, American Economic Association, vol. 6(2), pages 54-93, May.
    16. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    17. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    18. Bernd Fitzenberger & Gaby Wunderlich, 2004. "The Changing Life Cycle Pattern In Female Employment: A Comparison Of Germany And The Uk," Scottish Journal of Political Economy, Scottish Economic Society, vol. 51(3), pages 302-328, August.
    19. Sascha O. Becker & Peter H. Egger & Maximilian von Ehrlich, 2013. "Absorptive Capacity and the Growth and Investment Effects of Regional Transfers: A Regression Discontinuity Design with Heterogeneous Treatment Effects," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 29-77, November.
    20. Bernd Fitzenberger & Ralf Wilke, 2006. "Using quantile regression for duration analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:29:y:2017:i:2:p:447-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.