IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v24y2012i3p597-612.html
   My bibliography  Save this article

Design-adaptive nonparametric estimation of conditional quantile derivatives

Author

Listed:
  • S. Goh

Abstract

This paper proposes a new approach to constructing nonparametric estimators of conditional quantile functions and their derivatives with respect to conditioning variables. The new approach is intended specifically to produce estimators with biases that do not depend on the design density. This is in marked contrast to more conventional nonparametric estimators based on locally polynomial quantile regressions, the biases of which are characterised by asymptotic expansions in which the design density appears, at least at some order of approximation. The specific approach taken in this paper involves the kernel smoothing of the ratio of a preliminary nonparametric estimate of the conditional quantile function to another preliminary nonparametric estimate of the design density. Monte Carlo evidence indicates that the proposed estimators compare favourably to nonparametric estimators based on local polynomials. An empirical example exploring the relationship between individual earnings and age is also included. Additional technical details are contained in supplementary material available online.

Suggested Citation

  • S. Goh, 2012. "Design-adaptive nonparametric estimation of conditional quantile derivatives," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 597-612.
  • Handle: RePEc:taf:gnstxx:v:24:y:2012:i:3:p:597-612
    DOI: 10.1080/10485252.2012.688826
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.688826
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.688826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    2. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    3. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    5. repec:hal:journl:peer-00741628 is not listed on IDEAS
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    8. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
    9. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    2. Christophe Muller, 2019. "Linear Quantile Regression and Endogeneity Correction," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 123-128, August.
    3. Tae-Hwan Kim & Christophe Muller, 2012. "Bias Transmission and Variance Reduction in Two-Stage Quantile Regression," Working Papers halshs-00793372, HAL.
    4. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.
    5. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    6. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    7. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    8. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    9. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    10. Narula, Subhash C. & Wellington, John F. & Lewis, Stephen A., 2012. "Valuating residential real estate using parametric programming," European Journal of Operational Research, Elsevier, vol. 217(1), pages 120-128.
    11. Jean-Marc Fournier & Isabell Koske, 2012. "The determinants of earnings inequality: evidence from quantile regressions," OECD Journal: Economic Studies, OECD Publishing, vol. 2012(1), pages 7-36.
    12. Duschl, Matthias & Schimke, Antje & Brenner, Thomas & Luxen, Dennis, 2011. "Firm growth and the spatial impact of geolocated external factors: Empirical evidence for German manufacturing firms," Working Paper Series in Economics 36, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    13. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    14. Baer, Werner & Galvão Jr., Antonio Fialho, 2008. "Tax burden, government expenditures and income distribution in Brazil," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(2), pages 345-358, May.
    15. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    16. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    17. Jamal Bouoiyour & Amal Miftah & Refk Selmi, 2019. "The economic contribution of immigration on Europe: Fresh evidence from a “hybrid” quantile regression model," Working Papers hal-02346700, HAL.
    18. Jamal Bouoiyour & Refk Selmi, 2017. "The Bitcoin price formation: Beyond the fundamental sources," Working Papers hal-01548710, HAL.
    19. Wiji Arulampalam & Alison Booth & Mark Bryan, 2010. "Are there asymmetries in the effects of training on the conditional male wage distribution?," Journal of Population Economics, Springer;European Society for Population Economics, vol. 23(1), pages 251-272, January.
    20. Marrocu, Emanuela & Paci, Raffaele & Zara, Andrea, 2015. "Micro-economic determinants of tourist expenditure: A quantile regression approach," Tourism Management, Elsevier, vol. 50(C), pages 13-30.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:24:y:2012:i:3:p:597-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.