IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i4p1051-1062.html
   My bibliography  Save this article

Depth-based weighted empirical likelihood and general estimating equations

Author

Listed:
  • Yunlu Jiang
  • Shaoli Wang
  • Wenxiu Ge
  • Xueqin Wang

Abstract

In this paper, we link the depth-based weighted empirical likelihood (WEL) with general estimating equations to produce a robust estimation of parameters for contaminated data with auxiliary information about the parameters. Such auxiliary information can be expressed through a group of functionally independent general estimating equations. Under general conditions, asymptotic properties of the WEL estimator are established. Furthermore, we prove that the WEL ratio statistic is asymptotically chi-squared distributed. Simulation studies are conducted to test the robustness of the WEL estimator. Finally, we apply the proposed method to analyse the gilgai survey data.

Suggested Citation

  • Yunlu Jiang & Shaoli Wang & Wenxiu Ge & Xueqin Wang, 2011. "Depth-based weighted empirical likelihood and general estimating equations," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 1051-1062.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:4:p:1051-1062
    DOI: 10.1080/10485252.2011.594510
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2011.594510
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2011.594510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongli Sang & Xin Dang & Yichuan Zhao, 2020. "Depth-based weighted jackknife empirical likelihood for non-smooth U-structure equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 573-598, June.
    2. Xiaohui Liu & Qihua Wang & Yi Liu, 2017. "A consistent jackknife empirical likelihood test for distribution functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 249-269, April.
    3. Yunlu Jiang & Canhong Wen & Xueqin Wang, 2018. "Adaptive Exponential Power Depth with Application to Classification," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 466-480, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:4:p:1051-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.