IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i6p757-767.html
   My bibliography  Save this article

Nonparametric estimation of hazard quantile function

Author

Listed:
  • P. Sankaran
  • N. Unnikrishnan Nair

Abstract

In this paper, we study the estimation of the hazard quantile function based on right censored data. Two nonparametric estimators, one based on the empirical quantile density function and the other using the kernel smoothing method, are proposed. Asymptotic properties of the kernel-based estimator are discussed. Monte Carlo simulation studies are conducted to compare the two estimators. The method is illustrated for a real data set.

Suggested Citation

  • P. Sankaran & N. Unnikrishnan Nair, 2009. "Nonparametric estimation of hazard quantile function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(6), pages 757-767.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:6:p:757-767
    DOI: 10.1080/10485250902919046
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250902919046
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250902919046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Jones, 1992. "Estimating densities, quantiles, quantile densities and density quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(4), pages 721-727, December.
    2. Cheng, Cheng, 2002. "Almost-sure uniform error bounds of general smooth estimators of quantile density functions," Statistics & Probability Letters, Elsevier, vol. 59(2), pages 183-194, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chesneau, Christophe & Dewan, Isha & Doosti, Hassan, 2016. "Nonparametric estimation of a quantile density function by wavelet methods," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 161-174.
    2. Sankaran, P.G. & Sunoj, S.M. & Nair, N. Unnikrishnan, 2016. "Kullback–Leibler divergence: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 72-79.
    3. P. Sankaran & Bijamma Thomas & N. Midhu, 2015. "On bilinear hazard quantile functions," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 135-148, April.
    4. Sunoj, S.M. & Sankaran, P.G. & Nanda, Asok K., 2013. "Quantile based entropy function in past lifetime," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 366-372.
    5. P.G. Sankaran & N.N. Midhu, 2017. "Nonparametric estimation of mean residual quantile function under right censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1856-1874, July.
    6. Nanda, Asok K. & Sankaran, P.G. & Sunoj, S.M., 2014. "Rényi’s residual entropy: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 114-121.
    7. Soni, Pooja & Dewan, Isha & Jain, Kanchan, 2012. "Nonparametric estimation of quantile density function," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3876-3886.
    8. Unnikrishnan Nair, N. & Vineshkumar, B., 2011. "Ageing concepts: An approach based on quantile function," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 2016-2025.
    9. Sunoj, S.M. & Sankaran, P.G., 2012. "Quantile based entropy function," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1049-1053.
    10. Sankaran, P.G. & Unnikrishnan Nair, N. & Sreedevi, E.P., 2010. "A quantile based test for comparing cumulative incidence functions of competing risks models," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 886-891, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P.G. Sankaran & N.N. Midhu, 2017. "Nonparametric estimation of mean residual quantile function under right censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1856-1874, July.
    2. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Soni, Pooja & Dewan, Isha & Jain, Kanchan, 2012. "Nonparametric estimation of quantile density function," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3876-3886.
    4. Wolski, M., 2013. "Exploring Nonlinearities in Financial Systemic Risk," CeNDEF Working Papers 13-14, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    5. Chesneau, Christophe & Dewan, Isha & Doosti, Hassan, 2016. "Nonparametric estimation of a quantile density function by wavelet methods," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 161-174.
    6. Enache, Andreea & Florens, Jean-Pierre & Sbai, Erwann, 2023. "A functional estimation approach to the first-price auction models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1564-1588.
    7. Grigory Franguridi, 2022. "Bias correction and uniform inference for the quantile density function," Papers 2207.09004, arXiv.org.
    8. Karvanen, Juha, 2006. "Estimation of quantile mixtures via L-moments and trimmed L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 947-959, November.
    9. Willem Albers, 1995. "A two-stage rank test using density estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 675-691, December.
    10. Wolski, Marcin, 2018. "Sovereign risk and corporate cost of borrowing: Evidence from a counterfactual study," EIB Working Papers 2018/05, European Investment Bank (EIB).
    11. Ryan Janicki & Tucker S. McElroy, 2016. "Hermite expansion and estimation of monotonic transformations of Gaussian data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 207-234, March.
    12. de Bruin, R. & Salome, D. & Schaafsma, W., 1999. "A semi-Bayesian method for nonparametric density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 19-30, March.
    13. Meiseberg, Brinja, 2016. "The Effectiveness of E-tailers’ Communication Practices in Stimulating Sales of Niche versus Popular Products," Journal of Retailing, Elsevier, vol. 92(3), pages 319-332.
    14. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    15. repec:hum:wpaper:sfb649dp2015-038 is not listed on IDEAS
    16. Pasha Andreyanov & Grigory Franguridi, 2021. "Nonparametric inference on counterfactuals in first-price auctions," Papers 2106.13856, arXiv.org, revised Oct 2024.
    17. Pooja Soni & Isha Dewan & Kanchan Jain, 2019. "Nonparametric tests for ordered quantiles," Statistical Papers, Springer, vol. 60(3), pages 963-981, June.
    18. Amel, Azzi & Ali, Laksaci & Elias, Ould Saïd, 2022. "On the robustification of the kernel estimator of the functional modal regression," Statistics & Probability Letters, Elsevier, vol. 181(C).
    19. Yao Luo & Yuanyuan Wan, 2018. "Integrated-Quantile-Based Estimation for First-Price Auction Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 173-180, January.
    20. Halkos, George & Polemis, Michael, 2018. "Does market structure trigger efficiency? Evidence for the USA before and after the financial crisis," MPRA Paper 84511, University Library of Munich, Germany.
    21. Polemis, Michael, 2018. "Personality traits as an engine of knowledge: A quantile regression approach," MPRA Paper 88614, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:6:p:757-767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.