IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i12p2016-2025.html
   My bibliography  Save this article

Ageing concepts: An approach based on quantile function

Author

Listed:
  • Unnikrishnan Nair, N.
  • Vineshkumar, B.

Abstract

The notion of ageing plays an important role in reliability analysis and in identifying life distributions. Most of the ageing concepts existing in the literature are described on the basis of measures defined in terms of the distribution function. Recently, the role of quantile functions has also been identified as lifetime models, and reliability functions based on distribution functions were redefined in terms of quantile functions. In the present paper, we redefine some important popular ageing concepts using quantile functions. The uses of new definitions are illustrated by discussing ageing properties of some quantile function models.

Suggested Citation

  • Unnikrishnan Nair, N. & Vineshkumar, B., 2011. "Ageing concepts: An approach based on quantile function," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 2016-2025.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:2016-2025
    DOI: 10.1016/j.spl.2011.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211002720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry Joe & Frank Proschan, 1984. "Percentile Residual Life Functions," Operations Research, INFORMS, vol. 32(3), pages 668-678, June.
    2. Shaked, Moshe, 2010. "The decreasing percentile residual life aging notion," DES - Working Papers. Statistics and Econometrics. WS ws101807, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Adamidis, Konstantinos & Dimitrakopoulou, Theodora & Loukas, Sotirios, 2005. "On an extension of the exponential-geometric distribution," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 259-269, July.
    4. P. Sankaran & N. Unnikrishnan Nair, 2009. "Nonparametric estimation of hazard quantile function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(6), pages 757-767.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kayal, Suchandan, 2018. "Quantile-based cumulative inaccuracy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 329-344.
    2. P. Sankaran & Bijamma Thomas & N. Midhu, 2015. "On bilinear hazard quantile functions," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 135-148, April.
    3. Bijamma Thomas & N.N. Midhu & P.G. Sankaran, 2015. "A software reliability model using mean residual quantile function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1442-1457, July.
    4. Sreelakshmi N. & Asha G. & Muraleedharan Nair K. R., 2015. "On Inferring Income Inequality Measures Using L-moments," Stochastics and Quality Control, De Gruyter, vol. 30(2), pages 75-87, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:ws102612 is not listed on IDEAS
    2. P.G. Sankaran & N.N. Midhu, 2017. "Nonparametric estimation of mean residual quantile function under right censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1856-1874, July.
    3. M. Shafaei Noughabi & M. Kayid, 2019. "Bivariate quantile residual life: a characterization theorem and statistical properties," Statistical Papers, Springer, vol. 60(6), pages 2001-2012, December.
    4. Nanda, Asok K. & Sankaran, P.G. & Sunoj, S.M., 2014. "Rényi’s residual entropy: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 114-121.
    5. Saralees Nadarajah & Božidar Popović & Miroslav Ristić, 2013. "Compounding: an R package for computing continuous distributions obtained by compounding a continuous and a discrete distribution," Computational Statistics, Springer, vol. 28(3), pages 977-992, June.
    6. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    7. Bander Al-Zahrani & Areej M. AL-Zaydi, 2022. "Moments of progressively type-II censored order statistics from the complementary exponential geometric distribution and associated inference," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1052-1065, June.
    8. Soni, Pooja & Dewan, Isha & Jain, Kanchan, 2012. "Nonparametric estimation of quantile density function," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3876-3886.
    9. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    10. Sunoj, S.M. & Sankaran, P.G., 2012. "Quantile based entropy function," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1049-1053.
    11. Jorge Navarro & Antonio Guillamón & María del Carmen Ruiz, 2009. "Generalized mixtures in reliability modelling: Applications to the construction of bathtub shaped hazard models and the study of systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 323-337, May.
    12. Rosa E. Lillo, 2005. "On the median residual lifetime and its aging properties: A characterization theorem and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 370-380, June.
    13. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    14. Zawar Hussain & Muhammad Aslam & Zahid Asghar, 2019. "On Exponential Negative-Binomial-X Family of Distributions," Annals of Data Science, Springer, vol. 6(4), pages 651-672, December.
    15. Paul Janssen & Jan Swanepoel & Noël Veraverbeke, 2009. "New tests for exponentiality against new better than used in th quantile," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 85-97.
    16. Min Wang & Ibrahim Elbatal, 2015. "The modified Weibull geometric distribution," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 303-315, December.
    17. repec:cte:wsrepe:ws103317 is not listed on IDEAS
    18. Chesneau, Christophe & Dewan, Isha & Doosti, Hassan, 2016. "Nonparametric estimation of a quantile density function by wavelet methods," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 161-174.
    19. Jong-Hyeon Jeong & Sin-Ho Jung & Joseph P. Costantino, 2008. "Nonparametric Inference on Median Residual Life Function," Biometrics, The International Biometric Society, vol. 64(1), pages 157-163, March.
    20. Shahsanaei Fatemeh & Rezaei Sadegh & Pak Abbas, 2012. "A New Two-Parameter Lifetime Distribution with Increasing Failure Rate," Stochastics and Quality Control, De Gruyter, vol. 27(1), pages 1-17, September.
    21. Sankaran, P.G. & Sunoj, S.M. & Nair, N. Unnikrishnan, 2016. "Kullback–Leibler divergence: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 72-79.
    22. P. Sankaran & Bijamma Thomas & N. Midhu, 2015. "On bilinear hazard quantile functions," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 135-148, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:2016-2025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.