IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v18y2015i9p981-992.html
   My bibliography  Save this article

Experimental and computational investigation of the patient-specific abdominal aortic aneurysm pressure field

Author

Listed:
  • R. Antón
  • C.-Y. Chen
  • M.-Y. Hung
  • E.A. Finol
  • K. Pekkan

Abstract

The objective of the present manuscript is three-fold: (i) to study the detailed pressure field inside a patient-specific abdominal aortic aneurysm (AAA) model experimentally and numerically and discuss its clinical relevance, (ii) to validate a number of possible numerical model options and their ability to predict the experimental pressure field and (iii) to compare the spatial pressure drop in the AAA before and after the formation of intraluminal thrombus (ILT) for a late disease development timeline. A finite volume method was used to solve the governing equations of fluid flow to simulate the flow dynamics in a numerical model of the AAA. Following our patient-specific anatomical rapid prototyping technique, physical models of the aneurysm were created with seven ports for pressure measurement along the blood flow path. A flow loop operating with a blood analogue fluid was used to replicate the patient-specific flow conditions, acquired with phase-contrast magnetic resonance imaging, and measure pressure in the flow model. The Navier–Stokes equations and two turbulent models were implemented numerically to compare the pressure estimations with experimental measurements. The relative pressure difference from experiments obtained with the best performing model (unsteady laminar simulation) was ∼1.1% for the AAA model without ILT and ∼15.4% for the AAA model with ILT (using Reynolds Stress Model). Future investigations should include validation of the 3D velocity field and wall shear stresses within the AAA sac predicted by the three numerical models.

Suggested Citation

  • R. Antón & C.-Y. Chen & M.-Y. Hung & E.A. Finol & K. Pekkan, 2015. "Experimental and computational investigation of the patient-specific abdominal aortic aneurysm pressure field," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(9), pages 981-992, July.
  • Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:9:p:981-992
    DOI: 10.1080/10255842.2013.865024
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2013.865024
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2013.865024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christine M. Scotti & Jorge Jimenez & Satish C. Muluk & Ender A. Finol, 2008. "Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(3), pages 301-322.
    2. Danny Bluestein & Kris Dumont & Matthieu De Beule & John Ricotta & Paul Impellizzeri & Benedict Verhegghe & Pascal Verdonck, 2009. "Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm – FSI modelling," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(1), pages 73-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elhanafy, Ahmed & Guaily, Amr & Elsaid, Ahmed, 2019. "Numerical simulation of blood flow in abdominal aortic aneurysms: Effects of blood shear-thinning and viscoelastic properties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 55-71.
    2. Evangelos Makris & Vasileios Gkanis & Sokrates Tsangaris & Christos Housiadas, 2012. "A methodology to generate structured computational grids from DICOM data: application to a patient-specific abdominal aortic aneurysm (AAA) model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 15(2), pages 173-183.
    3. An-Shik Yang & Chih-Yung Wen & Li-Yu Tseng & Chih-Chieh Chiang & Wen-Yih Isaac Tseng & Hsi-Yu Yu, 2014. "An innovative numerical approach to resolve the pulse wave velocity in a healthy thoracic aorta model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(5), pages 461-473, April.
    4. Anastasios Raptis & Michalis Xenos & Stelios Dimas & Athanasios Giannoukas & Nicos Labropoulos & Danny Bluestein & Miltiadis I. Matsagkas, 2016. "Effect of macroscale formation of intraluminal thrombus on blood flow in abdominal aortic aneurysms," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(1), pages 84-92, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:18:y:2015:i:9:p:981-992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.