IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v11y2008i3p301-322.html
   My bibliography  Save this article

Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction

Author

Listed:
  • Christine M. Scotti
  • Jorge Jimenez
  • Satish C. Muluk
  • Ender A. Finol

Abstract

Abdominal aortic aneurysm (AAA) rupture is the clinical manifestation of an induced force exceeding the resistance provided by the strength of the arterial wall. This force is most frequently assumed to be the product of a uniform luminal pressure acting along the diseased wall. However fluid dynamics is a known contributor to the pathogenesis of AAAs, and the dynamic interaction of blood flow and the arterial wall represents the in vivo environment at the macro-scale. The primary objective of this investigation is to assess the significance of assuming an arbitrary estimated peak fluid pressure inside the aneurysm sac for the evaluation of AAA wall mechanics, as compared with the non-uniform pressure resulting from a coupled fluid–structure interaction (FSI) analysis. In addition, a finite element approach is utilised to estimate the effects of asymmetry and wall thickness on the wall stress and fluid dynamics of ten idealised AAA models and one non-aneurysmal control. Five degrees of asymmetry with uniform and variable wall thickness are used. Each was modelled under a static pressure-deformation analysis, as well as a transient FSI. The results show that the inclusion of fluid flow yields a maximum AAA wall stress up to 20% higher compared to that obtained with a static wall stress analysis with an assumed peak luminal pressure of 117 mmHg. The variable wall models have a maximum wall stress nearly four times that of a uniform wall thickness, and also increasing with asymmetry in both instances. The inclusion of an axial stretch and external pressure to the computational domain decreases the wall stress by 17%.

Suggested Citation

  • Christine M. Scotti & Jorge Jimenez & Satish C. Muluk & Ender A. Finol, 2008. "Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(3), pages 301-322.
  • Handle: RePEc:taf:gcmbxx:v:11:y:2008:i:3:p:301-322
    DOI: 10.1080/10255840701827412
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255840701827412
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255840701827412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Antón & C.-Y. Chen & M.-Y. Hung & E.A. Finol & K. Pekkan, 2015. "Experimental and computational investigation of the patient-specific abdominal aortic aneurysm pressure field," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(9), pages 981-992, July.
    2. Elhanafy, Ahmed & Guaily, Amr & Elsaid, Ahmed, 2019. "Numerical simulation of blood flow in abdominal aortic aneurysms: Effects of blood shear-thinning and viscoelastic properties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 55-71.
    3. Evangelos Makris & Vasileios Gkanis & Sokrates Tsangaris & Christos Housiadas, 2012. "A methodology to generate structured computational grids from DICOM data: application to a patient-specific abdominal aortic aneurysm (AAA) model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 15(2), pages 173-183.
    4. An-Shik Yang & Chih-Yung Wen & Li-Yu Tseng & Chih-Chieh Chiang & Wen-Yih Isaac Tseng & Hsi-Yu Yu, 2014. "An innovative numerical approach to resolve the pulse wave velocity in a healthy thoracic aorta model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(5), pages 461-473, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:11:y:2008:i:3:p:301-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.