IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v14y2011i01p9-22.html
   My bibliography  Save this article

Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation

Author

Listed:
  • Martin Spiegel
  • Thomas Redel
  • Y. Jonathan Zhang
  • Tobias Struffert
  • Joachim Hornegger
  • Robert G. Grossman
  • Arnd Doerfler
  • Christof Karmonik

Abstract

Haemodynamic factors, in particular wall shear stresses (WSSs) may have significant impact on growth and rupture of cerebral aneurysms. Without a means to measure WSS reliably in vivo, computational fluid dynamic (CFD) simulations are frequently employed to visualise and quantify blood flow from patient-specific computational models. With increasing interest in integrating these CFD simulations into pretreatment planning, a better understanding of the validity of the calculations in respect to computation parameters such as volume element type, mesh size and mesh composition is needed. In this study, CFD results for the two most common aneurysm types (saccular and terminal) are compared for polyhedral- vs. tetrahedral-based meshes and discussed regarding future clinical applications. For this purpose, a set of models were constructed for each aneurysm with spatially varying surface and volume mesh configurations (mesh size range: 5119–258, 481 volume elements). WSS distribution on the model wall and point-based velocity measurements were compared for each configuration model. Our results indicate a benefit of polyhedral meshes in respect to convergence speed and more homogeneous WSS patterns. Computational variations of WSS values and blood velocities are between 0.84 and 6.3% from the most simple mesh (tetrahedral elements only) and the most advanced mesh design investigated (polyhedral mesh with boundary layer).

Suggested Citation

  • Martin Spiegel & Thomas Redel & Y. Jonathan Zhang & Tobias Struffert & Joachim Hornegger & Robert G. Grossman & Arnd Doerfler & Christof Karmonik, 2011. "Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 14(01), pages 9-22.
  • Handle: RePEc:taf:gcmbxx:v:14:y:2011:i:01:p:9-22
    DOI: 10.1080/10255842.2010.518565
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2010.518565
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2010.518565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yubiao & Alkhedhair, Abdullah M. & Guan, Zhiqiang & Hooman, Kamel, 2018. "Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers," Energy, Elsevier, vol. 160(C), pages 678-692.
    2. Zhang, Jisheng & Liu, Siyuan & Guo, Yakun & Sun, Ke & Guan, Dawei, 2022. "Performance of a bidirectional horizontal-axis tidal turbine with passive flow control devices," Renewable Energy, Elsevier, vol. 194(C), pages 997-1008.
    3. Larbi, Ahmed Amine & Bounif, Abdelhamid & Senouci, Mohamed & Gökalp, Iskender & Bouzit, Mohamed, 2018. "RANS modelling of a lifted hydrogen flame using eulerian/lagrangian approaches with transported PDF method," Energy, Elsevier, vol. 164(C), pages 1242-1256.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:14:y:2011:i:01:p:9-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.