IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v13y2010i2p235-246.html
   My bibliography  Save this article

A review of algorithms for medical image segmentation and their applications to the female pelvic cavity

Author

Listed:
  • Zhen Ma
  • João Manuel R.S. Tavares
  • Renato Natal Jorge
  • T. Mascarenhas

Abstract

This paper aims to make a review on the current segmentation algorithms used for medical images. Algorithms are classified according to their principal methodologies, namely the ones based on thresholds, the ones based on clustering techniques and the ones based on deformable models. The last type is focused on due to the intensive investigations into the deformable models that have been done in the last few decades. Typical algorithms of each type are discussed and the main ideas, application fields, advantages and disadvantages of each type are summarised. Experiments that apply these algorithms to segment the organs and tissues of the female pelvic cavity are presented to further illustrate their distinct characteristics. In the end, the main guidelines that should be considered for designing the segmentation algorithms of the pelvic cavity are proposed.

Suggested Citation

  • Zhen Ma & João Manuel R.S. Tavares & Renato Natal Jorge & T. Mascarenhas, 2010. "A review of algorithms for medical image segmentation and their applications to the female pelvic cavity," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(2), pages 235-246.
  • Handle: RePEc:taf:gcmbxx:v:13:y:2010:i:2:p:235-246
    DOI: 10.1080/10255840903131878
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255840903131878
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255840903131878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Karimi & Seyed Mohammadali Rahmati & Reza Razaghi, 2017. "A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(12), pages 1350-1363, September.
    2. Xiangbin Liu & Liping Song & Shuai Liu & Yudong Zhang, 2021. "A Review of Deep-Learning-Based Medical Image Segmentation Methods," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    3. Abdul Momin & Naoshi Kondo & Dimas Firmanda Al Riza & Yuichi Ogawa & David Obenland, 2023. "A Methodological Review of Fluorescence Imaging for Quality Assessment of Agricultural Products," Agriculture, MDPI, vol. 13(7), pages 1-14, July.
    4. Jorge Barbosa & Bruno Figueiredo & Nuno Bettencourt & João Tavares, 2011. "Towards automatic quantification of the epicardial fat in non-contrasted CT images," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 14(10), pages 905-914.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:13:y:2010:i:2:p:235-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.