IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v8y2002i4p422-448.html
   My bibliography  Save this article

Explaining and forecasting the euro/dollar exchange rate through a non-linear threshold model

Author

Listed:
  • Asmara Jamaleh

Abstract

A linear econometric error correction model (ECM) model is built, based on short interest rates, gross domestic product (GDP) growth expectations and inflation differentials, in order to explain the euro/dollar exchange rate dynamics and provide reliable forecasts. This specification performs well. However, the introduction of non-linear threshold dynamics provides a better understanding of 'abnormal' features other than deviations from long-run equilibrium levels, allowing for the possibility of asymmetric behaviour. Empirical evidence of this is found in the actual dynamics of the euro. The non-linear specification performs better than the linear model in both in-sample fitting and out-of-sample forecasting, showing that fundamentals hold, working also through some non-linear mechanism, in explaining the euro/dollar dynamics.

Suggested Citation

  • Asmara Jamaleh, 2002. "Explaining and forecasting the euro/dollar exchange rate through a non-linear threshold model," The European Journal of Finance, Taylor & Francis Journals, vol. 8(4), pages 422-448.
  • Handle: RePEc:taf:eurjfi:v:8:y:2002:i:4:p:422-448
    DOI: 10.1080/13518470210167301
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470210167301
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470210167301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeremy Berkowitz, 1999. "Evaluating the forecasts of risk models," Finance and Economics Discussion Series 1999-11, Board of Governors of the Federal Reserve System (U.S.).
    2. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    3. Lundbergh, Stefan & Teräsvirta, Timo, 1998. "Modelling economic high-frequency time series with STAR-STGARCH models," SSE/EFI Working Paper Series in Economics and Finance 291, Stockholm School of Economics.
    4. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Malliaris & Mary Malliaris, 2013. "Are oil, gold and the euro inter-related? Time series and neural network analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 1-14, January.
    2. Costas Karfakis, 2008. "What Determines the Forward Exchange Rate of the Euro?," Discussion Paper Series 2008_02, Department of Economics, University of Macedonia, revised Feb 2008.
    3. Costas Karfakis, 2008. "Does the US international debt affect the euro/dollar exchange rate?," Discussion Paper Series 2008_06, Department of Economics, University of Macedonia, revised Sep 2008.
    4. Belaire-Franch, Jorge & Opong, Kwaku K., 2005. "Some evidence of random walk behavior of Euro exchange rates using ranks and signs," Journal of Banking & Finance, Elsevier, vol. 29(7), pages 1631-1643, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
    2. Philip Rothman & Dick van Dijk & Philip Hans Franses, 1999. "A Multivariate STAR Analysis of the Relationship Between Money and Output," Working Papers 9913, East Carolina University, Department of Economics.
    3. Costas Milas & Ruthira Naraidoo, 2009. "Financial Market Conditions, Real Time, Nonlinearity and European Central Bank Monetary Policy: In-Sample and Out-of-Sample Assessment," Working Papers 200923, University of Pretoria, Department of Economics.
    4. Costas Milas & Phil Rothman, 2005. "Multivariate STAR Unemployment Rate Forecasts," Econometrics 0502010, University Library of Munich, Germany.
    5. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    6. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    7. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    8. Driver, Ciaran & Trapani, Lorenzo & Urga, Giovanni, 2013. "On the use of cross-sectional measures of forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 29(3), pages 367-377.
    9. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    10. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    11. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    12. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    13. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    14. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    15. Zhang, Han & Guo, Bin & Liu, Lanbiao, 2022. "The time-varying bond risk premia in China," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 51-76.
    16. Reus, Lorenzo & Carrasco, José A. & Pincheira, Pablo, 2020. "Do it with a smile: Forecasting volatility with currency options," Finance Research Letters, Elsevier, vol. 34(C).
    17. Rossi, Barbara, 2006. "Are Exchange Rates Really Random Walks? Some Evidence Robust To Parameter Instability," Macroeconomic Dynamics, Cambridge University Press, vol. 10(1), pages 20-38, February.
    18. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    19. Giot, Pierre & Petitjean, Mikael, 2007. "The information content of the Bond-Equity Yield Ratio: Better than a random walk?," International Journal of Forecasting, Elsevier, vol. 23(2), pages 289-305.
    20. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:8:y:2002:i:4:p:422-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.