IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v7y2001i4p289-311.html
   My bibliography  Save this article

Dynamic local models for segmentation and prediction of financial time series

Author

Listed:
  • Mehdi Azzouzi
  • Ian Nabney

Abstract

In the analysis and prediction of many real-world time series, the assumption of stationarity is not valid. Aspecial form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We introduce a new model which combines a dynamic switching (controlled by a hidden Markov model) and a non-linear dynamical system. We show how to train this hybrid model in a maximum likelihood approach and evaluate its performance on both synthetic and financial data.

Suggested Citation

  • Mehdi Azzouzi & Ian Nabney, 2001. "Dynamic local models for segmentation and prediction of financial time series," The European Journal of Finance, Taylor & Francis Journals, vol. 7(4), pages 289-311.
  • Handle: RePEc:taf:eurjfi:v:7:y:2001:i:4:p:289-311
    DOI: 10.1080/13518470110071155
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470110071155
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470110071155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Randolph & Xiao Qin & Tan Gee Kwang, 2004. "Unit Root Tests with Markov-Switching," Econometric Society 2004 Australasian Meetings 145, Econometric Society.
    3. Mark Coppejans & Donna Gilleskie & Holger Sieg & Koleman Strumpf, 2007. "Consumer Demand under Price Uncertainty: Empirical Evidence from the Market for Cigarettes," The Review of Economics and Statistics, MIT Press, vol. 89(3), pages 510-521, August.
    4. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    5. Kosater, Peter & Mosler, Karl, 2006. "Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices," Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
    6. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    7. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    8. Samet G nay, 2015. "Markov Regime Switching Generalized Autoregressive Conditional Heteroskedastic Model and Volatility Modeling for Oil Returns," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 979-985.
    9. Andrew Stuart Duncan & Guangling“dave” Liu, 2009. "Modelling South African Currency Crises As Structural Changes In The Volatility Of The Rand," South African Journal of Economics, Economic Society of South Africa, vol. 77(3), pages 363-379, September.
    10. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    11. Bai, Zhidong & Hui, Yongchang & Wong, Wing-Keung, 2012. "New Non-Linearity Test to Circumvent the Limitation of Volterra Expansion," MPRA Paper 41872, University Library of Munich, Germany.
    12. Arjun Prakash & Nick James & Max Menzies & Gilad Francis, 2020. "Structural clustering of volatility regimes for dynamic trading strategies," Papers 2004.09963, arXiv.org, revised Nov 2021.
    13. repec:hum:wpaper:sfb649dp2015-026 is not listed on IDEAS
    14. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    15. Timmermann, Allan & Patton, Andrew, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.
    16. Jean-Paul Chavas, 2017. "Agroecosystem Productivity and the Dynamic Response to Shocks," NBER Chapters, in: The Economics of Poverty Traps, pages 291-314, National Bureau of Economic Research, Inc.
    17. Aliyu, Shehu Usman Rano, 2020. "What have we learnt from modelling stock returns in Nigeria: Higgledy-piggledy?," MPRA Paper 110382, University Library of Munich, Germany, revised 06 Jun 2021.
    18. Gabriel Rodríguez, 2015. "Modeling Latin-American Stock Markets Volatility: Varying Probabilities and Mean Reversion in a Random Level Shifts Model," Documentos de Trabajo / Working Papers 2015-403, Departamento de Economía - Pontificia Universidad Católica del Perú.
    19. Tom A. FEARNLEY, 2002. "Tests of an International Capital Asset Pricing Model with Stocks and Government Bonds and Regime Switching Prices of Risk and Intercepts," FAME Research Paper Series rp97, International Center for Financial Asset Management and Engineering.
    20. Allen, David E. & McAleer, Michael & Powell, Robert J. & Singh, Abhay K., 2017. "Volatility Spillovers from Australia's major trading partners across the GFC," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 159-175.
    21. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2013. "Time-varying beta: a boundedly rational equilibrium approach," Journal of Evolutionary Economics, Springer, vol. 23(3), pages 609-639, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:7:y:2001:i:4:p:289-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.