IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v19y2013i3p165-179.html
   My bibliography  Save this article

Modelling and trading the realised volatility of the FTSE100 futures with higher order neural networks

Author

Listed:
  • Georgios Sermpinis
  • Jason Laws
  • Christian L. Dunis

Abstract

The motivation for this article is the investigation of the use of a promising class of neural network (NN) models, higher order neural networks (HONNs), when applied to the task of forecasting and trading the 21-day-ahead realised volatility of the FTSE 100 futures index. This is done by benchmarking their results with those of two different NN designs, the multi-layer perceptron (MLP) and the recurrent neural network (RNN), along with a traditional technique, RiskMetrics. More specifically, the forecasting and trading performance of all models is examined over the eight FTSE 100 futures maturities of the period 2007--2008 using the realised volatility of the last 21 trading days of each maturity as the out-of-sample target. The statistical evaluation of our models is done by using a series of measures such as the mean absolute error, the mean absolute percentage error, the root-mean-squared error and the Theil U -statistic. Then we apply a simple trading strategy to exploit our forecasts based on trading at-the-money call options on FTSE 100 futures. As it turns out, HONNs demonstrate a remarkable performance and outperform all other models not only in terms of statistical accuracy but also in terms of trading efficiency. We also note that both the RNNs and MLPs provide sufficient results in the trading application in terms of cumulative profit and average profit per trade.

Suggested Citation

  • Georgios Sermpinis & Jason Laws & Christian L. Dunis, 2013. "Modelling and trading the realised volatility of the FTSE100 futures with higher order neural networks," The European Journal of Finance, Taylor & Francis Journals, vol. 19(3), pages 165-179, March.
  • Handle: RePEc:taf:eurjfi:v:19:y:2013:i:3:p:165-179
    DOI: 10.1080/1351847X.2011.606990
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2011.606990
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2011.606990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    2. Eunho Koo & Geonwoo Kim, 2023. "A New Neural Network Approach for Predicting the Volatility of Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1665-1679, April.
    3. Wang, Cheng & Bouri, Elie & Xu, Yahua & Zhang, Dingsheng, 2023. "Intraday and overnight tail risks and return predictability in the crude oil market: Evidence from oil-related regular news and extreme shocks," Energy Economics, Elsevier, vol. 127(PB).
    4. Liu, Dehong & Liang, Yucong & Zhang, Lili & Lung, Peter & Ullah, Rizwan, 2021. "Implied volatility forecast and option trading strategy," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 943-954.
    5. Christian L Dunis & Spiros D Likothanassis & Andreas S Karathanasopoulos & Georgios S Sermpinis & Konstantinos A Theofilatos, 2013. "A hybrid genetic algorithm–support vector machine approach in the task of forecasting and trading," Journal of Asset Management, Palgrave Macmillan, vol. 14(1), pages 52-71, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:19:y:2013:i:3:p:165-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.