IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v14y2008i6p503-521.html
   My bibliography  Save this article

Trading futures spread portfolios: applications of higher order and recurrent networks

Author

Listed:
  • Christian Dunis
  • Jason Laws
  • Ben Evans

Abstract

This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.

Suggested Citation

  • Christian Dunis & Jason Laws & Ben Evans, 2008. "Trading futures spread portfolios: applications of higher order and recurrent networks," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 503-521.
  • Handle: RePEc:taf:eurjfi:v:14:y:2008:i:6:p:503-521
    DOI: 10.1080/13518470801890834
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470801890834
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470801890834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongdong Lv & Zhenhua Huang & Meizi Li & Yang Xiang, 2019. "Selection of the optimal trading model for stock investment in different industries," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-20, February.
    2. Lubnau, Thorben & Todorova, Neda, 2015. "Trading on mean-reversion in energy futures markets," Energy Economics, Elsevier, vol. 51(C), pages 312-319.
    3. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    4. Christian L Dunis & Spiros D Likothanassis & Andreas S Karathanasopoulos & Georgios S Sermpinis & Konstantinos A Theofilatos, 2013. "A hybrid genetic algorithm–support vector machine approach in the task of forecasting and trading," Journal of Asset Management, Palgrave Macmillan, vol. 14(1), pages 52-71, February.
    5. Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
    6. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Erhard Reschenhofer & Werner Ploberger & Georg Lehecka, 2014. "Detecting fuzzy periodic patterns in futures spreads," Statistical Papers, Springer, vol. 55(2), pages 487-496, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:14:y:2008:i:6:p:503-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.