IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v13y2007i3p253-268.html
   My bibliography  Save this article

The Relevance of Accounting Data in the Measurement of Credit Risk

Author

Listed:
  • Amer Demirovic
  • Dylan Thomas

Abstract

Option pricing theory provides a robust and theoretically sound framework for the measurement of credit risk. Assuming perfect market conditions, information relevant to the measurement of a firm's credit risk is reflected in its equity price, with no role for accounting data. This hypothesis is tested using UK data and credit ratings as a proxy for credit risk. It is found that Merton's distance-to-default measure is the most significant variable in the measurement of credit risk. However, it is also found that accounting variables are incrementally informative when added to a model that contains only the distance-to-default measure. The incremental informativeness of accounting data varies across industries and depends on firm size. Although it is found that the general level of credit risk depends on the state of the economy, there is no evidence to suggest that the incremental informativeness of the accounting variables depends upon macroeconomic conditions.

Suggested Citation

  • Amer Demirovic & Dylan Thomas, 2007. "The Relevance of Accounting Data in the Measurement of Credit Risk," The European Journal of Finance, Taylor & Francis Journals, vol. 13(3), pages 253-268.
  • Handle: RePEc:taf:eurjfi:v:13:y:2007:i:3:p:253-268
    DOI: 10.1080/13518470601025177
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470601025177
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470601025177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    2. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Longstaff, Francis A & Schwartz, Eduardo S, 1995. "A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
    5. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    6. Core, John E. & Schrand, Catherine M., 1999. "The effect of accounting-based debt covenants on equity valuation1," Journal of Accounting and Economics, Elsevier, vol. 27(1), pages 1-34, February.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    9. Lev, B & Zarowin, P, 1999. "The boundaries of financial reporting and how to extend them," Journal of Accounting Research, Wiley Blackwell, vol. 37(2), pages 353-385.
    10. Blum, M, 1974. "Failing Company Discriminant-Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 12(1), pages 1-25.
    11. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    12. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuray Melgarejo & Katrin Simon & Francisco J. Arcelus, 2010. "Differences In Financial Performance Amongst Spanish Smes According To Their Capital‐Ownership Structure: A Descriptive Analysis," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 81(1), pages 105-129, March.
    2. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    3. George Chalamandaris & Nikos E. Vlachogiannakis, 2018. "Are financial ratios relevant for trading credit risk? Evidence from the CDS market," Annals of Operations Research, Springer, vol. 266(1), pages 395-440, July.
    4. Purificación Parrado-Martínez & Antonio Partal-Ureña & Pilar Gómez Fernández-Aguado, 2016. "Banking Soundness Indicators and Sovereign Risk in Time of Crisis: The Case of the European Union," The World Economy, Wiley Blackwell, vol. 39(8), pages 1172-1193, August.
    5. Mehmood, Mian Saqib & Sheraz, Iram & Mehmood, Asif & G. Mujtaba, Bahaudin, 2017. "Empirical Examination for Operational and Credit Risk Perspective – A Case of Commercial Banks of Pakistan," MPRA Paper 80491, University Library of Munich, Germany.
    6. Alessandro Mechelli & Vincenzo Sforza & Alessandra Stefanoni & Riccardo Cimini, 2018. "The Usefulness of Regulatory Capital for Investors’ Judgments in the Basel 3 Framework," International Journal of Business and Management, Canadian Center of Science and Education, vol. 13(6), pages 1-72, April.
    7. Abdullah Ash-shu¡¯ayree Al-khawaldeh, 2013. "Determinants and Impacts of Internal Credit Rating," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 4(1), pages 120-131, January.
    8. Purificacion Parrado-Martinez & Antonio Parta Ureña & Pilar Gomez Fernandez-Aguado, 2014. "Usefulness of Financial Soundness Indicators for risk assessment: The case of EU member countries," Working Papers 14.01, Universidad Pablo de Olavide, Department of Financial Economics and Accounting (former Department of Business Administration).
    9. Luciana Barbosa & Paulo Soares de Pinho, 2017. "Operational cycle and tax liabilities as determinants of corporate credit risk," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    10. Bernoth, Kerstin & Pick, Andreas, 2011. "Forecasting the fragility of the banking and insurance sectors," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 807-818, April.
    11. Demirovic, Amer & Tucker, Jon & Guermat, Cherif, 2015. "Accounting data and the credit spread: An empirical investigation," Research in International Business and Finance, Elsevier, vol. 34(C), pages 233-250.
    12. repec:ptu:bdpart:r201709 is not listed on IDEAS
    13. repec:pab:wpbsad:12.07 is not listed on IDEAS
    14. Nasiri, Maryam Akbari & Narayan, Paresh Kumar & Mishra, Sagarika, 2019. "Reaction of the credit default swap market to the release of periodic financial reports," International Review of Financial Analysis, Elsevier, vol. 65(C).
    15. Bernoth, Kerstin & Pick, Andreas, 2011. "Forecasting the fragility of the banking and insurance sectors," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 807-818, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    2. Demirovic, Amer & Tucker, Jon & Guermat, Cherif, 2015. "Accounting data and the credit spread: An empirical investigation," Research in International Business and Finance, Elsevier, vol. 34(C), pages 233-250.
    3. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    5. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    6. Frieda Rikkers & Andre E. Thibeault, 2009. "A Structural form Default Prediction Model for SMEs, Evidence from the Dutch Market," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 229-264, September.
    7. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    8. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    9. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    10. Catherine Refait-Alexandre, 2000. "Estimation du risque de défaut par une modélisation stochastique du bilan : application à des firmes industrielles françaises," Post-Print hal-01359570, HAL.
    11. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    12. Bhanu Pratap SINGH & Alok Kumar MISHRA, 2019. "Sensitivity of bankruptcy prediction models to the change in econometric methods," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(620), A), pages 71-86, Autumn.
    13. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    14. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    15. Reisz, Alexander S. & Perlich, Claudia, 2007. "A market-based framework for bankruptcy prediction," Journal of Financial Stability, Elsevier, vol. 3(2), pages 85-131, July.
    16. Marielle de Jong & Lauren Stagnol, 2016. "A fundamental bond index including solvency criteria," Journal of Asset Management, Palgrave Macmillan, vol. 17(4), pages 280-294, July.
    17. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    18. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    19. Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.
    20. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:13:y:2007:i:3:p:253-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.