IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v12y2006i6-7p495-512.html
   My bibliography  Save this article

Detecting market transitions and energy futures risk management using principal components

Author

Listed:
  • Svetlana Borovkova

Abstract

An empirical approach to analysing the forward curve dynamics of energy futures is presented. For non-seasonal commodities—such as crude oil—the forward curve is well described by the first three principal components: the level, slope and curvature. A principal component indicator is described that detects transitions between the two fundamental market states remarkably well. For seasonal commodities—such as electricity and natural gas—it is shown how to extract the seasonal component from the forward curve. The principal component indicator can then be applied to the de-seasoned forward curve to detect significant price deviations that may support profitable trading strategies. A principal component approach to forward curve modelling is applied to computing portfolio value-at-risk. This approach is combined with a new two-step resampling procedure to improve value-at-risk estimates.

Suggested Citation

  • Svetlana Borovkova, 2006. "Detecting market transitions and energy futures risk management using principal components," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 495-512.
  • Handle: RePEc:taf:eurjfi:v:12:y:2006:i:6-7:p:495-512
    DOI: 10.1080/13518470500377380
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470500377380
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470500377380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margaret Insley, 2013. "On the timing of non-renewable resource extraction with regime switching prices: an optimal stochastic control approach," Working Papers 1302, University of Waterloo, Department of Economics, revised Aug 2013.
    2. Insley, Margaret, 2017. "Resource extraction with a carbon tax and regime switching prices: Exercising your options," Energy Economics, Elsevier, vol. 67(C), pages 1-16.
    3. Vázquez, Miguel & Sánchez-Úbeda, Eugenio F. & Berzosa, Ana & Barquín, Julián, 2008. "Short-term evolution of forward curves and volatility in illiquid power market," MPRA Paper 8932, University Library of Munich, Germany, revised May 2008.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    4. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    5. Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
    6. Roberto Baviera, 2019. "Back-Of-The-Envelope Swaptions In A Very Parsimonious Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-24, August.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. repec:uts:finphd:40 is not listed on IDEAS
    9. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    10. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    11. Oh Kwon, 2009. "On the equivalence of a class of affine term structure models," Annals of Finance, Springer, vol. 5(2), pages 263-279, March.
    12. Constantin Mellios, 2007. "Interest rate options valuation under incomplete information," Annals of Operations Research, Springer, vol. 151(1), pages 99-117, April.
    13. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    14. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    15. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    16. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    17. Ramaprasad Bhar & Carl Chiarella, 1997. "Interest rate futures: estimation of volatility parameters in an arbitrage-free framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(4), pages 181-199.
    18. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    19. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    21. Paolo BATTOCCHIO, 2002. "Optimal Portfolio Strategies with Stochastic Wage Income : The Case of A defined Contribution Pension Plan," LIDAM Discussion Papers IRES 2002005, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:12:y:2006:i:6-7:p:495-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.