IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v33y2014i5-6p431-471.html
   My bibliography  Save this article

A Heteroskedasticity-Robust F -Test Statistic for Individual Effects

Author

Listed:
  • Chris D. Orme
  • Takashi Yamagata

Abstract

We derive the asymptotic distribution of the standard F-test statistic for fixed effects, in static linear panel data models, under both non-normality and heteroskedasticity of the error terms, when the cross-section dimension is large but the time series dimension is fixed. It is shown that a simple linear transformation of the F-test statistic yields asymptotically valid inferences and under local fixed (or correlated) individual effects, this heteroskedasticity-robust F-test enjoys higher asymptotic power than a suitably robustified Random Effects test. Wild bootstrap versions of these tests are considered which, in a Monte Carlo study, provide more reliable inference in finite samples.

Suggested Citation

  • Chris D. Orme & Takashi Yamagata, 2014. "A Heteroskedasticity-Robust F -Test Statistic for Individual Effects," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 431-471, August.
  • Handle: RePEc:taf:emetrv:v:33:y:2014:i:5-6:p:431-471
    DOI: 10.1080/07474938.2013.824792
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2013.824792
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2013.824792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. DAVIDSON, Russel & MACKINNON, James G., 1985. "Heteroskedastcity-robust tests in regressions directions," LIDAM Reprints CORE 678, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    3. Chris D. Orme & Takashi Yamagata, 2006. "The asymptotic distribution of the F-test statistic for individual effects," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 404-422, November.
    4. L. G. Godfrey & C. D. Orme & J. M. C. Santos Silva, 2006. "Simulation-based tests for heteroskedasticity in linear regression models: Some further results," Econometrics Journal, Royal Economic Society, vol. 9(1), pages 76-97, March.
    5. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    6. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    8. Godfrey, Leslie G. & Orme, Chris D., 2004. "Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients," Economics Letters, Elsevier, vol. 82(2), pages 281-287, February.
    9. Yuzo Honda, 1985. "Testing the Error Components Model with Non-Normal Disturbances," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(4), pages 681-690.
    10. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    11. Nerlove, Marc, 1971. "Further Evidence on the Estimation of Dynamic Economic Relations from a Time Series of Cross Sections," Econometrica, Econometric Society, vol. 39(2), pages 359-382, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    2. Stan Hurn & Ralf Becker, 2009. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
    3. Emmanuel Flachaire, 2005. "More Efficient Tests Robust to Heteroskedasticity of Unknown Form," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 219-241.
    4. Bennala, Nezar & Hallin, Marc & Paindaveine, Davy, 2012. "Pseudo-Gaussian and rank-based optimal tests for random individual effects in large n small T panels," Journal of Econometrics, Elsevier, vol. 170(1), pages 50-67.
    5. Badi Baltagi & Seuck Heun Song & Byoung Cheol Jung, 2002. "Simple Lm Tests For The Unbalanced Nested Error Component Regression Model," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 167-187.
    6. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    7. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    8. Bera, Anil K. & Sosa-Escudero, Walter & Yoon, Mann, 2001. "Tests for the error component model in the presence of local misspecification," Journal of Econometrics, Elsevier, vol. 101(1), pages 1-23, March.
    9. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    10. Chris D. Orme & Takashi Yamagata, 2006. "The asymptotic distribution of the F-test statistic for individual effects," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 404-422, November.
    11. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 117855, University Library of Munich, Germany, revised Jul 2023.
    12. Sofia Costa & Marta Faias & Pedro Júdice & Pedro Mota, 2021. "Panel data modeling of bank deposits," Annals of Finance, Springer, vol. 17(2), pages 247-264, June.
    13. E Bataa & D R Osborn & D H Kim, 2006. "A Further Examination of the Expectations Hypothesis for the Term Structure," Centre for Growth and Business Cycle Research Discussion Paper Series 72, Economics, The University of Manchester.
    14. Erdenebat Bataa & Dong H. Kim & Denise R. Osborn, 2007. "Expectations Hypothesis Tests in the Presence of Model Uncertainty," Discussion Paper Series 0703, Institute of Economic Research, Korea University.
    15. Godfrey, L.G., 2006. "Tests for regression models with heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2715-2733, June.
    16. repec:jss:jstsof:27:i02 is not listed on IDEAS
    17. Nezar Bennala & Marc Hallin & Davy Paindaveine, 2010. "Rank‐based Optimal Tests for Random Effects in Panel Data," Working Papers ECARES ECARES 2010-018, ULB -- Universite Libre de Bruxelles.
    18. Mehmet Demiral & Emrah Eray Akça & Ipek Tekin, 2021. "Predictors of global carbon dioxide emissions: Do stringent environmental policies matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18337-18361, December.
    19. Lu, Xun & Su, Liangjun, 2020. "Determining individual or time effects in panel data models," Journal of Econometrics, Elsevier, vol. 215(1), pages 60-83.
    20. Halunga, Andreea G. & Orme, Chris D. & Yamagata, Takashi, 2017. "A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 198(2), pages 209-230.
    21. Smeekes, S. & Urbain, J.R.Y.J., 2014. "A multivariate invariance principle for modified wild bootstrap methods with an application to unit root testing," Research Memorandum 008, Maastricht University, Graduate School of Business and Economics (GSBE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:33:y:2014:i:5-6:p:431-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.