IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v19y2000i2p175-206.html
   My bibliography  Save this article

Unconditional pseudo-maximum likelihood and adaptive estimation in the presence of conditional heterogeneity of unknown form

Author

Listed:
  • Douglas Hodgson

Abstract

We consider parametric non-linear regression models with additive innovations which are serially uncorrelated but not necessarily independent, and consider the consequences of maximum likelihood and related one-step iterative estimation when the innovations are treated as being iid from their unconditional density. We find that the estimators' asymptotic covariance matrices will generally differ from those that would obtain if the errors actually were iid, except for the special case of strictly exogenous regressors. One important application of these results is to analysis of the properties of adaptive estimators, which employ nonparametric kernel estimates of the unconditional density of the disturbances in the construction of one-step iterative estimators. In the presence of strictly exogenous regressors, adaptive estimators are found to be asymptotically equivalent to the one-step iterative estimators that use the correct unconditional density. We illustrate our results through a brief Monte Carlo study.

Suggested Citation

  • Douglas Hodgson, 2000. "Unconditional pseudo-maximum likelihood and adaptive estimation in the presence of conditional heterogeneity of unknown form," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 175-206.
  • Handle: RePEc:taf:emetrv:v:19:y:2000:i:2:p:175-206
    DOI: 10.1080/07474930008800467
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930008800467
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930008800467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2004. "Testing Forward Exchange Rate Unbiasedness Efficiently: A Semiparametric Approach," Journal of Applied Economics, Taylor & Francis Journals, vol. 7(1), pages 325-353, May.
    2. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
    3. Amengual, Dante & Sentana, Enrique, 2010. "A comparison of mean-variance efficiency tests," Journal of Econometrics, Elsevier, vol. 154(1), pages 16-34, January.
    4. Douglas Hodgson, 2011. "Age–price profiles for Canadian painters at auction," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 35(4), pages 287-308, November.
    5. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639, December.
    6. Gabriele Fiorentini & Enrique Sentana, 2007. "On the Efficiency and Consistency of Likelihood Estimation in Multivariate Conditionally Heteroskedastic Dynamic Regression Models," Working Papers wp2007_0713, CEMFI.
    7. Douglas Hodgson, 2002. "Semiparametric Efficient Estimation of the Mean of a Time Series in the Presence of Conditional Heterogeneity of Unknown Form," Cahiers de recherche CREFE / CREFE Working Papers 146, CREFE, Université du Québec à Montréal.
    8. Enrique Sentana, 2009. "The econometrics of mean-variance efficiency tests: a survey," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 65-101, November.
    9. repec:rim:rimwps:38-07 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:19:y:2000:i:2:p:175-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.