IDEAS home Printed from https://ideas.repec.org/a/taf/conmgt/v21y2003i1p31-41.html
   My bibliography  Save this article

Fuzzy decision-making for dynamic resource allocation

Author

Listed:
  • H. Zhang
  • C. M. Tam

Abstract

For construction activities, timely resource allocation is crucial to avoid unnecessary waiting time of resources and delay of activities, especially under the condition of limited supply of resources. Timely resource allocation, i.e. determination of an activity that has the highest priority to obtain resources at that instant, is a dynamic decision-making process dependent on real-time information during a construction process. With the consideration of operational and stochastic characteristics of construction operations and the fuzziness of multiple-decision objectives for an appropriate allocation policy (due to imprecision or subjectivity in decision criteria), a fuzzy dynamic resource allocation (FDRA) based on the fuzzy decision-making approach is developed. In order to model the timely resource allocation decisions, the FDRA is built into a discreteevent simulation system with an activity scanning strategy. The benefit of FDRA on construction productivity is analysed through simulation experimentation by which comparisons among different allocation policies are made.

Suggested Citation

  • H. Zhang & C. M. Tam, 2003. "Fuzzy decision-making for dynamic resource allocation," Construction Management and Economics, Taylor & Francis Journals, vol. 21(1), pages 31-41.
  • Handle: RePEc:taf:conmgt:v:21:y:2003:i:1:p:31-41
    DOI: 10.1080/0144619032000065108
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0144619032000065108
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0144619032000065108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Sou-Sen Leu & Chung-Huei Yang, 1999. "A genetic-algorithm-based resource-constrained construction scheduling system," Construction Management and Economics, Taylor & Francis Journals, vol. 17(6), pages 767-776.
    3. De Reyck, Bert & Herroelen, Willy, 1999. "The multi-mode resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 119(2), pages 538-556, December.
    4. Tsai, Ying-Wei & D. Gemmill, Douglas, 1998. "Using tabu search to schedule activities of stochastic resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 111(1), pages 129-141, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Zhang & Heng Li & C. M. Tam, 2006. "Heuristic scheduling of resource-constrained, multiple-mode and repetitive projects," Construction Management and Economics, Taylor & Francis Journals, vol. 24(2), pages 159-169.
    2. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    3. Patoghi, Amirhosein & Mousavi, Seyed Meysam, 2021. "A new approach for material ordering and multi-mode resource constraint project scheduling problem in a multi-site context under interval-valued fuzzy uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    5. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    6. Gourav Gupta & Shivani & Deepika Rani, 2024. "Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1274-1300, September.
    7. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    8. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    9. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    10. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    11. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    12. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    13. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    14. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    15. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    16. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    17. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    18. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    19. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    20. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:conmgt:v:21:y:2003:i:1:p:31-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCME20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.