Data modelling and the application of a neural network approach to the prediction of total construction costs
Author
Abstract
Suggested Citation
DOI: 10.1080/01446190210151050
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hakami Waled & Hassan Awad, 2019. "Preliminary Construction Cost Estimate in Yemen by Artificial Neural Network," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 7(1), pages 110-122, January.
- Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
- Chou, Jui-Sheng & Tai, Yian & Chang, Lian-Ji, 2010. "Predicting the development cost of TFT-LCD manufacturing equipment with artificial intelligence models," International Journal of Production Economics, Elsevier, vol. 128(1), pages 339-350, November.
- Zangeneh, Pouya & McCabe, Brenda, 2022. "Modelling socio-technical risks of industrial megaprojects using Bayesian Networks and reference classes," Resources Policy, Elsevier, vol. 79(C).
- Agnieszka Leśniak & Krzysztof Zima, 2018. "Cost Calculation of Construction Projects Including Sustainability Factors Using the Case Based Reasoning (CBR) Method," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
- Wei Tong Chen & Ying-Hua Huang, 2006. "Approximately predicting the cost and duration of school reconstruction projects in Taiwan," Construction Management and Economics, Taylor & Francis Journals, vol. 24(12), pages 1231-1239.
- Ivan Damnjanovic & Xue Zhou, 2009. "Impact of crude oil market behaviour on unit bid prices: the evidence from the highway construction sector," Construction Management and Economics, Taylor & Francis Journals, vol. 27(9), pages 881-890.
- Swei, Omar & Gregory, Jeremy & Kirchain, Randolph, 2017. "Construction cost estimation: A parametric approach for better estimates of expected cost and variation," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 295-305.
- Qiao, Yu & Fricker, Jon D. & Labi, Samuel, 2019. "Effects of bundling policy on project cost under market uncertainty: A comparison across different highway project types," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 606-625.
More about this item
Keywords
Cost Modelling; Neural Networks; Linear Regression Analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:conmgt:v:20:y:2002:i:6:p:465-472. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCME20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.