IDEAS home Printed from https://ideas.repec.org/a/taf/cjutxx/v20y2013i4p23-42.html
   My bibliography  Save this article

Feature Mapping the Seoul Metro Station Areas Based on a Self-Organizing Map

Author

Listed:
  • Keemin Sohn

Abstract

Land in the vicinity of railway stations in the Seoul metropolitan area has been spotlighted as a target for redevelopment in accordance with the principles of transit-oriented development (TOD). In order to understand the nature of station areas as a whole, it is required to identify their current status with respect to their built environments, demographic characteristics, socioeconomic status, and transport aspects. Most of the previous studies that have focused on characterizing urban areas assumed that clearly separable clustering is possible and tried to find a robust methodology for that. Many researchers have used either supervised classifiers requiring a pre-classified dataset for training, or K-means-like unsupervised classifiers demanding a predetermined number of clusters. The present study focused on the fact that it was hard to find such a clear separation in station areas in Seoul. A more abstract technology was necessary to position the current status of each station area and to find how different station areas are from one another. A robust unsupervised classifier, called the self-organizing map (SOM), was employed to investigate the similarities and differences among station areas in Seoul. The SOM results revealed many informative findings for policy development without any classification.

Suggested Citation

  • Keemin Sohn, 2013. "Feature Mapping the Seoul Metro Station Areas Based on a Self-Organizing Map," Journal of Urban Technology, Taylor & Francis Journals, vol. 20(4), pages 23-42, October.
  • Handle: RePEc:taf:cjutxx:v:20:y:2013:i:4:p:23-42
    DOI: 10.1080/10630732.2013.855514
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10630732.2013.855514
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10630732.2013.855514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory J. Costello, 2001. "A Spatial Approach to Price Segmentation in Housing Markets," ERES eres2001_139, European Real Estate Society (ERES).
    2. Goodman, Allen C. & Thibodeau, Thomas G., 2003. "Housing market segmentation and hedonic prediction accuracy," Journal of Housing Economics, Elsevier, vol. 12(3), pages 181-201, September.
    3. Bourassa, Steven C. & Hoesli, Martin & Peng, Vincent S., 2003. "Do housing submarkets really matter?," Journal of Housing Economics, Elsevier, vol. 12(1), pages 12-28, March.
    4. Zhuo Chen & Seong-Hoon Cho & Neelam Poudyal & Roland K. Roberts, 2009. "Forecasting Housing Prices under Different Market Segmentation Assumptions," Urban Studies, Urban Studies Journal Limited, vol. 46(1), pages 167-187, January.
    5. Tom Kauko, 2004. "A Comparative Perspective on Urban Spatial Housing Market Structure: Some More Evidence of Local Sub-markets Based on a Neural Network Classification of Amsterdam," Urban Studies, Urban Studies Journal Limited, vol. 41(13), pages 2555-2579, December.
    6. Bourassa, Steven C. & Hamelink, Foort & Hoesli, Martin & MacGregor, Bryan D., 1999. "Defining Housing Submarkets," Journal of Housing Economics, Elsevier, vol. 8(2), pages 160-183, June.
    7. Tom Kauko, 2009. "Classification of Residential Areas in the Three Largest Dutch Cities Using Multidimensional Data," Urban Studies, Urban Studies Journal Limited, vol. 46(8), pages 1639-1663, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yunzhe & Singleton, Alex & Arribas-Bel, Daniel, 2020. "Considering context and dynamics: A classification of transit-orientated development for New York City," Journal of Transport Geography, Elsevier, vol. 85(C).
    2. Shereen Wael & Abeer Elshater & Samy Afifi, 2022. "Mapping User Experiences around Transit Stops Using Computer Vision Technology: Action Priorities from Cairo," Sustainability, MDPI, vol. 14(17), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris Leishman & Greg Costello & Steven Rowley & Craig Watkins, 2013. "The Predictive Performance of Multilevel Models of Housing Sub-markets: A Comparative Analysis," Urban Studies, Urban Studies Journal Limited, vol. 50(6), pages 1201-1220, May.
    2. David C. Wheeler & Antonio Páez & Jamie Spinney & Lance A. Waller, 2014. "A Bayesian approach to hedonic price analysis," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 663-683, August.
    3. Tom Kauko, 2004. "A Comparative Perspective on Urban Spatial Housing Market Structure: Some More Evidence of Local Sub-markets Based on a Neural Network Classification of Amsterdam," Urban Studies, Urban Studies Journal Limited, vol. 41(13), pages 2555-2579, December.
    4. Ingrid Nappi‐Choulet Pr. & Tristan‐Pierre Maury, 2009. "A Spatiotemporal Autoregressive Price Index for the Paris Office Property Market," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 305-340, June.
    5. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    6. Dieudonné Tchuente & Serge Nyawa, 2022. "Real estate price estimation in French cities using geocoding and machine learning," Annals of Operations Research, Springer, vol. 308(1), pages 571-608, January.
    7. Biswas, Arnab, 2012. "Housing submarkets and the impacts of foreclosures on property prices," Journal of Housing Economics, Elsevier, vol. 21(3), pages 235-245.
    8. Berna Keskin & Craig Watkins, 2017. "Defining spatial housing submarkets: Exploring the case for expert delineated boundaries," Urban Studies, Urban Studies Journal Limited, vol. 54(6), pages 1446-1462, May.
    9. Edward Chi Ho Tang & Charles Ka Yui Leung, 2024. "Icing on the cake: Can the Top-Floor Units serve as a status good and an investment simultaneously?," ISER Discussion Paper 1252, Institute of Social and Economic Research, Osaka University.
    10. Alain Coën & Alexis Pourcelot & Richard Malle, 2022. "Macroeconomic shocks and ripple effects in the Greater Paris Metropolis," Post-Print hal-03713561, HAL.
    11. Gjestland, Arnstein & McArthur, David Philip & Osland, Liv & Thorsen, Inge, 2014. "The suitability of hedonic models for cost-benefit analysis: Evidence from commuting flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 136-151.
    12. Coën, Alain & Pourcelot, Alexis & Malle, Richard, 2022. "Macroeconomic shocks and ripple effects in the Greater Paris Metropolis," Journal of Housing Economics, Elsevier, vol. 56(C).
    13. Nishi, Hayato & Asami, Yasushi & Shimizu, Chihiro, 2021. "The illusion of a hedonic price function: Nonparametric interpretable segmentation for hedonic inference," Journal of Housing Economics, Elsevier, vol. 52(C).
    14. Luc Anselin & Pedro Amaral, 2024. "Endogenous spatial regimes," Journal of Geographical Systems, Springer, vol. 26(2), pages 209-234, April.
    15. Renigier-Biłozor, Małgorzata & Janowski, Artur & Walacik, Marek & Chmielewska, Aneta, 2022. "Modern challenges of property market analysis- homogeneous areas determination," Land Use Policy, Elsevier, vol. 119(C).
    16. Dorsey, Robert E. & Hu, Haixin & Mayer, Walter J. & Wang, Hui-chen, 2010. "Hedonic versus repeat-sales housing price indexes for measuring the recent boom-bust cycle," Journal of Housing Economics, Elsevier, vol. 19(2), pages 75-93, June.
    17. Zhuo Chen & Seong-Hoon Cho & Neelam Poudyal & Roland K. Roberts, 2009. "Forecasting Housing Prices under Different Market Segmentation Assumptions," Urban Studies, Urban Studies Journal Limited, vol. 46(1), pages 167-187, January.
    18. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    19. Marko Kryvobokov, 2011. "Defining apartment neighbourhoods with Thiessen polygons and fuzzy equality clustering," ERES eres2011_142, European Real Estate Society (ERES).
    20. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:cjutxx:v:20:y:2013:i:4:p:23-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/cjut20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.