IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v16y2009i3p253-259.html
   My bibliography  Save this article

Boundary Values and Finite Difference Methods for the Single Factor Term Structure Equation

Author

Listed:
  • Erik Ekstrom
  • Per Lotstedt
  • Johan Tysk

Abstract

We study the classical single factor term structure equation for models that predict non-negative interest rates. For these models we develop a fast and accurate finite difference method (FD) using the appropriate boundary conditions at zero.

Suggested Citation

  • Erik Ekstrom & Per Lotstedt & Johan Tysk, 2009. "Boundary Values and Finite Difference Methods for the Single Factor Term Structure Equation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 253-259.
  • Handle: RePEc:taf:apmtfi:v:16:y:2009:i:3:p:253-259
    DOI: 10.1080/13504860802584004
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860802584004
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860802584004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
    2. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Chiarella & Susanne Griebsch & Boda Kang, 2013. "Investigating Time-Efficient Methods to Price Compound Options in the Heston Model," Research Paper Series 328, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2025-2054, December.
    3. Sutthimat, Phiraphat & Mekchay, Khamron & Rujivan, Sanae, 2022. "Closed-form formula for conditional moments of generalized nonlinear drift CEV process," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    4. Lars Josef Hook & Erik Lindstrom, 2015. "Efficient Computation of the Quasi Likelihood function for Discretely Observed Diffusion Processes," Papers 1509.07751, arXiv.org.
    5. Dareiotis, Konstantinos & Ekström, Erik, 2019. "Density symmetries for a class of 2-D diffusions with applications to finance," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 452-472.
    6. Yan Han & Wanying Li & Shanshan Wei & Tiantian Zhang, 2018. "Research on Passenger’s Travel Mode Choice Behavior Waiting at Bus Station Based on SEM-Logit Integration Model," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    7. Olesya Grishchenko & Xiao Han & Victor Nistor, 2018. "A volatility-of-volatility expansion of the option prices in the SABR stochastic volatility model," Papers 1812.09904, arXiv.org.
    8. Höök, Lars Josef & Lindström, Erik, 2016. "Efficient computation of the quasi likelihood function for discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 426-437.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Ameur, Hatem & Breton, Michele & Karoui, Lotfi & L'Ecuyer, Pierre, 2007. "A dynamic programming approach for pricing options embedded in bonds," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2212-2233, July.
    2. Vorst, A. C. F., 1988. "Option Pricing And Stochastic Processes," Econometric Institute Archives 272366, Erasmus University Rotterdam.
    3. Stavros Panageas & Nicolae Garleanu, 2008. "Yooung, Old, Conservative and Bold: The implications of finite lives and heterogeneity for asset prices," 2008 Meeting Papers 409, Society for Economic Dynamics.
    4. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    5. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    6. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    8. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    9. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    10. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    11. Larrain, Borja, 2011. "World betas, consumption growth, and financial integration," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 999-1018, October.
    12. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Takami, Marcelo Yoshio & Tabak, Benjamin Miranda, 2008. "Interest rate option pricing and volatility forecasting: An application to Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 755-763.
    15. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    16. Petar Jevtić & Luca Regis, 2021. "A Square-Root Factor-Based Multi-Population Extension of the Mortality Laws," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    17. Alexander David & Pietro Veronesi, 1998. "Option Prices with Uncertain Fundamentals: Theory and Evidence on the Dynamics of Implied Volatilities," CRSP working papers 485, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    18. Javier de Frutos & Victor Gaton, 2018. "An extension of Heston's SV model to Stochastic Interest Rates," Papers 1809.09069, arXiv.org.
    19. Sharon Kozicki & Peter A. Tinsley, "undated". "Moving Endpoints in Macrofinance," Computing in Economics and Finance 1996 _058, Society for Computational Economics.
    20. Gray, Richard S., 1990. "The Role of Learning in Investment Decisions," 1990 Annual meeting, August 5-8, Vancouver, Canada 261490, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:16:y:2009:i:3:p:253-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.