IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v9y1999i2p183-191.html
   My bibliography  Save this article

Technical analysis versus market efficiency - a genetic programming approach

Author

Listed:
  • Colin Fyfe
  • John Paul Marney
  • Heather Tarbert

Abstract

In the paper the authors maintain that the prevalence of technical analysis in professional investment argues that such techniques should perhaps be taken more seriously by academics. The new technique of genetic programming is used to investigate a long time series of price data for a quoted property investment company, to discern whether there are any patterns in the data which could be used for technical trading purposes. A successful buy rule is found which generates returns in excess of what would be expected from the best-fitting null time-series model. Nevertheless, this turns out to be a more sophisticated variant of the buy and hold rule, which the authors term timing specific buy and hold. Although the rule does outperform simple buy and hold, it really does not provide sufficient grounds for the rejection of the efficient market hypothesis, though it does suggest that further investigation of the specific conditions of applicability of the EMH may be appropriate.

Suggested Citation

  • Colin Fyfe & John Paul Marney & Heather Tarbert, 1999. "Technical analysis versus market efficiency - a genetic programming approach," Applied Financial Economics, Taylor & Francis Journals, vol. 9(2), pages 183-191.
  • Handle: RePEc:taf:apfiec:v:9:y:1999:i:2:p:183-191
    DOI: 10.1080/096031099332447
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/096031099332447
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/096031099332447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
    2. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 405-426, December.
    3. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    4. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 857-880.
    5. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    6. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    7. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    2. Marcos Alvarez Díaz & Lucy Amigo Dobano & Francisco Rodríguez de Prado, "undated". "Taxing on Housing: A Welfare Evaluation of the Spanish Personal Income Tax," Studies on the Spanish Economy 142, FEDEA.
    3. Marcos Álvarez-Díaz & Alberto Álvarez, 2003. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0301, Universidade de Vigo, Departamento de Economía Aplicada.
    4. Marcos Álvarez-Díaz & Lucy Amigo Dobaño, 2003. "Métodos No-Lineales De Predicción En El Mercado De Valores Tecnológicos En España. Una Verificación De La Hipótesis Débil De Eficiencia," Working Papers 0303, Universidade de Vigo, Departamento de Economía Aplicada.
    5. Marcos Álvarez-Díaz & Rangan Gupta, 2015. "Forecasting the US CPI: Does Nonlinearity Matter?," Working Papers 201512, University of Pretoria, Department of Economics.
    6. Colin Fyfe & John Paul Marney & Heather Tarbert, 2005. "Risk adjusted returns from technical trading: a genetic programming approach," Applied Financial Economics, Taylor & Francis Journals, vol. 15(15), pages 1073-1077.
    7. Yujie Zhu & Tieqi Wang, 2017. "Deriving momentum strategies in Chinese stock Market: Using Gene Expression Programming," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(6), pages 1-4.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Eduardo Arango Thomas, 1998. "Some univariate time series properties of output," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 49, pages 7-46, Julio Dic.
    2. Saacke, Peter, 2002. "Technical analysis and the effectiveness of central bank intervention," Journal of International Money and Finance, Elsevier, vol. 21(4), pages 459-479, August.
    3. Yu-Lieh Huang & Chao-Hsi Huang, 2007. "The persistence of Taiwan's output fluctuations: an empirical study using innovation regime-switching model," Applied Economics, Taylor & Francis Journals, vol. 39(20), pages 2673-2679.
    4. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    5. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.
    6. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    7. Quah, Danny, 1992. "The Relative Importance of Permanent and Transitory Components: Identification and Some Theoretical Bounds," Econometrica, Econometric Society, vol. 60(1), pages 107-118, January.
    8. van de Gucht, Linda M. & Dekimpe, Marnik G. & Kwok, Chuck C. Y., 1996. "Persistence in foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 15(2), pages 191-220, April.
    9. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    10. Trifan, Emanuela, 2004. "Entscheidungsregeln und ihr Einfluss auf den Aktienkurs," Darmstadt Discussion Papers in Economics 131, Darmstadt University of Technology, Department of Law and Economics.
    11. Devi, P. Indira & Shanmugam, K.R. & Jayasree, M.G., 2012. "Compensating Wages for Occupational Risks of Farm Workers in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-12.
    12. Chiarella, Carl & Ladley, Daniel, 2016. "Chasing trends at the micro-level: The effect of technical trading on order book dynamics," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 119-131.
    13. Tatsuma Wada & Pierre Perron, 2006. "State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2006-029, Boston University - Department of Economics.
    14. Hilde Christiane Bjørnland, 1999. "Structural breaks and stochastic trends in macroeconomic variables in Norway," Applied Economics Letters, Taylor & Francis Journals, vol. 6(3), pages 133-138.
    15. Bertrand Maillet & Thierry Michel, 2000. "Further insights on the puzzle of technical analysis profitability," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 196-224.
    16. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    17. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    18. Lawrence J. Christiano, 1987. "Why is consumption less volatile than income?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 11(Fall), pages 2-20.
    19. Kwang-il Choe & Joshua Krausz & Kiseok Nam, 2011. "Technical trading rules for nonlinear dynamics of stock returns: evidence from the G-7 stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 36(3), pages 323-353, April.
    20. Skouras, Spyros, 2001. "Financial returns and efficiency as seen by an artificial technical analyst," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 213-244, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:9:y:1999:i:2:p:183-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.