IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v15y2005i15p1073-1077.html
   My bibliography  Save this article

Risk adjusted returns from technical trading: a genetic programming approach

Author

Listed:
  • Colin Fyfe
  • John Paul Marney
  • Heather Tarbert

Abstract

In this study, Genetic Programming is used to generate technical trading rules. These are assessed in terms of their basic returns and their risk adjusted returns. It is found that while the basic returns are impressive by comparison with buy and hold, they do not outperform buy and hold after risk-adjustment.

Suggested Citation

  • Colin Fyfe & John Paul Marney & Heather Tarbert, 2005. "Risk adjusted returns from technical trading: a genetic programming approach," Applied Financial Economics, Taylor & Francis Journals, vol. 15(15), pages 1073-1077.
  • Handle: RePEc:taf:apfiec:v:15:y:2005:i:15:p:1073-1077
    DOI: 10.1080/09603100500306709
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603100500306709
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603100500306709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    3. Boswijk, H.P. & Griffioen, G.A.W. & Hommes, C.H., 2000. "Succes and Failure of Technical Trading Strategies in the Cocoa Futures Markets," CeNDEF Working Papers 00-06, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    4. Stephen Brown & William Goetzmann & Alok Kumar, 1998. "The Dow Theory: William Peter Hamilton's Track Record Re-Considered," Yale School of Management Working Papers ysm85, Yale School of Management, revised 01 Apr 2008.
    5. J.P. Marney & H. Tarbert & C. Fyfe, 2000. "Technical Trading Versus Market Efficiency-A Genetic Programming Approach," Computing in Economics and Finance 2000 169, Society for Computational Economics.
    6. Colin Fyfe & John Paul Marney & Heather Tarbert, 1999. "Technical analysis versus market efficiency - a genetic programming approach," Applied Financial Economics, Taylor & Francis Journals, vol. 9(2), pages 183-191.
    7. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    8. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 405-426, December.
    9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    10. repec:bla:jfinan:v:53:y:1998:i:4:p:1311-1333 is not listed on IDEAS
    11. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    12. Routledge, Bryan R., 2001. "Genetic Algorithm Learning To Choose And Use Information," Macroeconomic Dynamics, Cambridge University Press, vol. 5(02), pages 303-325, April.
    13. W. Brian Arthur & John H. Holland & Blake LeBaron & Richard Palmer & Paul Taylor, 1996. "Asset Pricing Under Endogenous Expectation in an Artificial Stock Market," Working Papers 96-12-093, Santa Fe Institute.
    14. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    15. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    16. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    17. Franklin Allen & Risto Karjalainen, "undated". "Using Genetic Algorithms to Find Technical Trading Rules (Revised: 20-95)," Rodney L. White Center for Financial Research Working Papers 20-93, Wharton School Rodney L. White Center for Financial Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janice How & Martin Ling & Peter Verhoeven, 2010. "Does size matter? A genetic programming approach to technical trading," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 131-140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    2. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    3. Skouras, Spyros, 2001. "Financial returns and efficiency as seen by an artificial technical analyst," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 213-244, January.
    4. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    5. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    6. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    7. Brock,W.A. & Hommes,C.H., 1998. "Rational animal spirits," Working papers 23, Wisconsin Madison - Social Systems.
    8. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    9. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2001. "Evolutionary Dynamics in Financial Markets With Many Trader Types," CeNDEF Working Papers 01-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    10. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
    11. Hommes, C.H., 2005. "Heterogeneous Agents Models: two simple examples, forthcoming In: Lines, M. (ed.) Nonlinear Dynamical Systems in Economics, CISM Courses and Lectures, Springer, 2005, pp.131-164," CeNDEF Working Papers 05-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    12. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    13. Kevin Rink, 2023. "The predictive ability of technical trading rules: an empirical analysis of developed and emerging equity markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 403-456, December.
    14. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    15. Hommes, C.H., 2001. "Modeling the stylized facts in finance through simple nonlinear adaptive systems," CeNDEF Working Papers 01-06, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    16. Hommes, C.H. & Wagener, F.O.O., 2008. "Complex evolutionary systems in behavioral finance," CeNDEF Working Papers 08-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    17. He, Xue-Zhong & Zheng, Min, 2010. "Dynamics of moving average rules in a continuous-time financial market model," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 615-634, December.
    18. Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2000. "Bifurcation Routes to Volatility Clustering," CeNDEF Working Papers 00-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    19. Jying‐Nan Wang & Hung‐Chun Liu & Jiangze Du & Yuan‐Teng Hsu, 2019. "Economic benefits of technical analysis in portfolio management: Evidence from global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 890-902, April.
    20. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:15:y:2005:i:15:p:1073-1077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.