IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v20y2010i10p761-769.html
   My bibliography  Save this article

Recovering the moments of information flow and the normality of asset returns

Author

Listed:
  • Anthony Murphy
  • Marwan Izzeldin

Abstract

We investigate the univariate procedure used by Ane and Geman (AG, 2000) to recover the moments of the information flow from high-frequency data, in a mixture of distributions model which generalizes the subordinated process in Clark (1973). We explain why the third and higher moments of the latent information flow cannot be accurately recovered using this procedure. We illustrate this using Monte Carlo simulations. We also show that, contrary to the claims in AG, returns conditioned on the re-centred number of trades are not approximately Gaussian. Finally, we consider the bivariate approach of Richardson and Smith (1994), inter alia, to recover the moments of information flow.

Suggested Citation

  • Anthony Murphy & Marwan Izzeldin, 2010. "Recovering the moments of information flow and the normality of asset returns," Applied Financial Economics, Taylor & Francis Journals, vol. 20(10), pages 761-769.
  • Handle: RePEc:taf:apfiec:v:20:y:2010:i:10:p:761-769
    DOI: 10.1080/09603101003636212
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603101003636212
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603101003636212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, Kalok & Fong, Wai-Ming, 2000. "Trade size, order imbalance, and the volatility-volume relation," Journal of Financial Economics, Elsevier, vol. 57(2), pages 247-273, August.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
    4. Liesenfeld, Roman, 1998. "Dynamic Bivariate Mixture Models: Modeling the Behavior of Prices and Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 101-109, January.
    5. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    6. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    7. Harris, Lawrence, 1986. "Cross-Security Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(1), pages 39-46, March.
    8. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    9. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    10. Richardson, Matthew & Smith, Tom, 1994. "A Direct Test of the Mixture of Distributions Hypothesis: Measuring the Daily Flow of Information," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(1), pages 101-116, March.
    11. Bessembinder, Hendrik & Seguin, Paul J., 1993. "Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 21-39, March.
    12. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    13. Helyette Geman, 2005. "From Measure Changes to Time Changes in Asset Pricing," Post-Print halshs-00144296, HAL.
    14. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    15. repec:dau:papers:123456789/1388 is not listed on IDEAS
    16. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    17. Liesenfeld, Roman, 2001. "A generalized bivariate mixture model for stock price volatility and trading volume," Journal of Econometrics, Elsevier, vol. 104(1), pages 141-178, August.
    18. Lamoureux, Christopher G & Lastrapes, William D, 1994. "Endogenous Trading Volume and Momentum in Stock-Return Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 253-260, April.
    19. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    20. Harris, Lawrence, 1987. "Transaction Data Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 127-141, June.
    21. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    22. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    23. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torben G. Andersen & Oleg Bondarenko & Albert S. Kyle & Anna Obizhaeva, 2016. "Intraday Trading Invariance in the E-mini S&P 500 Futures Market," Working Papers w0229, New Economic School (NES).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony Murphy & Marwan Izzeldin, 2005. "Order Flow, Transaction Clock, and Normality of Asset Returns: A Comment on Ané and Geman (2000)," Finance 0512005, University Library of Munich, Germany.
    2. repec:lan:wpaper:3326 is not listed on IDEAS
    3. repec:lan:wpaper:3050 is not listed on IDEAS
    4. repec:lan:wpaper:3048 is not listed on IDEAS
    5. Marwan Izzeldin, 2007. "Trading volume and the number of trades," Working Papers 584864, Lancaster University Management School, Economics Department.
    6. repec:lan:wpaper:3142 is not listed on IDEAS
    7. Ronald Mahieu & Rob Bauer, 1998. "A Bayesian analysis of stock return volatility and trading volume," Applied Financial Economics, Taylor & Francis Journals, vol. 8(6), pages 671-687.
    8. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    9. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    12. Jawadi Fredj & Ureche-Rangau Loredana, 2013. "Threshold linkages between volatility and trading volume: evidence from developed and emerging markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 313-333, May.
    13. Jinliang Li & Chunchi Wu, 2006. "Daily Return Volatility, Bid-Ask Spreads, and Information Flow: Analyzing the Information Content of Volume," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2697-2740, September.
    14. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.
    15. Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
    16. Ainhoa Zarraga, 2003. "GMM-based testing procedures of the mixture of distributions model," Applied Financial Economics, Taylor & Francis Journals, vol. 13(11), pages 841-848.
    17. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    18. Su, Dongwei & Fleisher, Belton M., 1999. "Why does return volatility differ in Chinese stock markets?," Pacific-Basin Finance Journal, Elsevier, vol. 7(5), pages 557-586, December.
    19. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    20. Joel Hasbrouck, 1999. "Trading Fast and Slow: Security Market Events in Real Time," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-012, New York University, Leonard N. Stern School of Business-.
    21. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    22. Koubaa, Yosra & Slim, Skander, 2019. "The relationship between trading activity and stock market volatility: Does the volume threshold matter?," Economic Modelling, Elsevier, vol. 82(C), pages 168-184.
    23. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    24. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:20:y:2010:i:10:p:761-769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.