IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v7y2000i2p137-140.html
   My bibliography  Save this article

Trading futures markets based on signals from a neural network

Author

Listed:
  • Lonnie Hamm
  • B. Wade Brorsen

Abstract

A neural network trading model is developed for hard red winter wheat and Deutsche Mark futures markets. The inputs to the neural network are lagged prices. The results are generally unfavourable. The neural network does not produce statistically significant profits.

Suggested Citation

  • Lonnie Hamm & B. Wade Brorsen, 2000. "Trading futures markets based on signals from a neural network," Applied Economics Letters, Taylor & Francis Journals, vol. 7(2), pages 137-140.
  • Handle: RePEc:taf:apeclt:v:7:y:2000:i:2:p:137-140
    DOI: 10.1080/135048500351988
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/135048500351988&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/135048500351988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Joyce A. & Brorsen, B. Wade & Irwin, Scott H., 1989. "The Distribution of Futures Prices: A Test of the Stable Paretian and Mixture of Normals Hypotheses," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(1), pages 105-116, March.
    2. Michael A. Hudson & Raymond M. Leuthold & Gboroton F. Sarassoro, 1987. "Commodity futures price changes: Recent evidence for wheat, soybeans and live cattle," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 7(3), pages 287-301, June.
    3. Seung‐Ryong Yang & B. Wade Brorsen, 1993. "Nonlinear dynamics of daily futures prices: Conditional heteroskedasticity or chaos?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(2), pages 175-191, April.
    4. Gary Grudnitski & Larry Osburn, 1993. "Forecasting S&P and gold futures prices: An application of neural networks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(6), pages 631-643, September.
    5. Blake LeBaron, 1994. "Chaos and Nonlinear Forecastability in Economics and Finance," Finance 9411001, University Library of Munich, Germany.
    6. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasdeep S. Banga & B. Wade Brorsen, 2019. "Profitability of alternative methods of combining the signals from technical trading systems," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(1), pages 32-45, January.
    2. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    3. Martial Phélippé-Guinvarc'H & Jean Cordier, 2015. "Machine Learning for Semi-Strong Efficiency Test of Inter-Market Wheat Futures," Post-Print hal-02151848, HAL.
    4. Farzan Aminian & E. Suarez & Mehran Aminian & Daniel Walz, 2006. "Forecasting Economic Data with Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 28(1), pages 71-88, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brock, W.A. & Hommes, C.H., 1997. "Models of Compelxity in Economics and Finance," Working papers 9706, Wisconsin Madison - Social Systems.
    2. Marisa Faggini & Bruna Bruno & Anna Parziale, 2019. "Does Chaos Matter in Financial Time Series Analysis?," International Journal of Economics and Financial Issues, Econjournals, vol. 9(4), pages 18-24.
    3. Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
    4. Rosser, J. Jr. & Ahmed, Ehsan & Hartmann, Georg C., 2003. "Volatility via social flaring," Journal of Economic Behavior & Organization, Elsevier, vol. 50(1), pages 77-87, January.
    5. Cotter, John, 2001. "Margin exceedences for European stock index futures using extreme value theory," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1475-1502, August.
    6. Chatrath, Arjun & Adrangi, Bahram & Dhanda, Kanwalroop Kathy, 2002. "Are commodity prices chaotic?," Agricultural Economics, Blackwell, vol. 27(2), pages 123-137, August.
    7. Qifeng Qiao & Peter A. Beling, 2016. "Decision analytics and machine learning in economic and financial systems," Environment Systems and Decisions, Springer, vol. 36(2), pages 109-113, June.
    8. Barkoulas, John T. & Chakraborty, Atreya & Ouandlous, Arav, 2012. "A metric and topological analysis of determinism in the crude oil spot market," Energy Economics, Elsevier, vol. 34(2), pages 584-591.
    9. Plantinga, Andrew J. & Provencher, Bill, 2001. "Internal Consistency In Models Of Optimal Resource Use Under Uncertainty," 2001 Annual meeting, August 5-8, Chicago, IL 20712, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Vigfusson, Robert, 1997. "Switching between Chartists and Fundamentalists: A Markov Regime-Switching Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 291-305, October.
    11. Ito, Akitoshi, 1999. "Profits on technical trading rules and time-varying expected returns: evidence from Pacific-Basin equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 7(3-4), pages 283-330, August.
    12. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    13. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    14. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    15. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    16. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    17. Shawkat M. Hammoudeh & Yuan Yuan & Michael McAleer, 2009. "Exchange Rate and Industrial Commodity Volatility Transmissions and Hedging Strategies," CARF F-Series CARF-F-172, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    18. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    19. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    20. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:7:y:2000:i:2:p:137-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.