IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v19y2012i15p1441-1447.html
   My bibliography  Save this article

Can L-moments beat central moments in modelling risk? An empirical analysis

Author

Listed:
  • Xiao Qin

Abstract

This article applies a new statistical moment, Trimmed L-comoment, in modelling Expected Shortfall ( ES ) and exploits an empirical study on China's stock markets. In comparison with existing models, out-of-sample forecasts and backtests indicate superior accuracy and precision for the models based on Trimmed L-comoments, especially to those based on central moments.

Suggested Citation

  • Xiao Qin, 2012. "Can L-moments beat central moments in modelling risk? An empirical analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 19(15), pages 1441-1447, October.
  • Handle: RePEc:taf:apeclt:v:19:y:2012:i:15:p:1441-1447
    DOI: 10.1080/13504851.2011.631889
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13504851.2011.631889
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504851.2011.631889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerkhof, Jeroen & Melenberg, Bertrand, 2004. "Backtesting for risk-based regulatory capital," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1845-1865, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Woo Chang & Fabozzi, Frank J. & Cheridito, Patrick & Fox, Charles, 2014. "Controlling portfolio skewness and kurtosis without directly optimizing third and fourth moments," Economics Letters, Elsevier, vol. 122(2), pages 154-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Santiago Fajardo Barbachan & Aquiles Rocha de Farias & José Renato Haas Ornelas, 2008. "A Goodness-of-Fit Test with Focus on Conditional Value at Risk," Brazilian Review of Finance, Brazilian Society of Finance, vol. 6(2), pages 139-155.
    2. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Tsukahara, Fábio Yasuhiro & Kimura, Herbert & Sobreiro, Vinicius Amorim & Zambrano, Juan Carlos Arismendi, 2016. "Validation of default probability models: A stress testing approach," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 70-85.
    4. Wong, Woon K., 2008. "Backtesting trading risk of commercial banks using expected shortfall," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1404-1415, July.
    5. Kerkhof, F.L.J., 2003. "Model risk analysis for risk management and option pricing," Other publications TiSEM 01692df5-4c2d-4ed2-8108-4, Tilburg University, School of Economics and Management.
    6. Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
    7. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    8. Barbachan, José Santiago Fajardo & Ornelas, José Renato Haas & de Farias, Aquiles Rocha, 2006. "Goodness-of-fit Tests Focus on Value-at-Risk Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 26(2), November.
    9. Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
    10. Sander Barendse & Erik Kole & Dick van Dijk, 2023. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.
    11. Sebastian Bayer & Timo Dimitriadis, 2018. "Regression Based Expected Shortfall Backtesting," Papers 1801.04112, arXiv.org, revised Sep 2019.
    12. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    13. Ruodu Wang, 2016. "Regulatory arbitrage of risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 337-347, March.
    14. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
    15. Xiaochun Liu, 2017. "An integrated macro‐financial risk‐based approach to the stressed capital requirement," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 86-98, September.
    16. Kerkhof, Jeroen & Melenberg, Bertrand & Schumacher, Hans, 2010. "Model risk and capital reserves," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 267-279, January.
    17. Lönnbark, Carl, 2013. "On the role of the estimation error in prediction of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 847-853.
    18. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    19. Aramonte, Sirio & Giudice Rodriguez, Marius del & Wu, Jason, 2013. "Dynamic factor Value-at-Risk for large heteroskedastic portfolios," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4299-4309.
    20. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:19:y:2012:i:15:p:1441-1447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.