IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v10y2003i2p83-86.html
   My bibliography  Save this article

The factor structure of financial markets: a simulation study of the Italian case

Author

Listed:
  • Michele Costa

Abstract

This article develops a new information criterion for the analysis of the factor structure of financial markets. The new proposal is obtained by resorting to a Monte Carlo experiment, which allows one to evaluate the behaviour of different information criteria by a priori knowing the true number of unobservable factors. The financial markets factor structure is found to be different from those suggested by traditional factor analysis methods, and for the Italian stock market in particular, only two or three factors are signalled.

Suggested Citation

  • Michele Costa, 2003. "The factor structure of financial markets: a simulation study of the Italian case," Applied Economics Letters, Taylor & Francis Journals, vol. 10(2), pages 83-86.
  • Handle: RePEc:taf:apeclt:v:10:y:2003:i:2:p:83-86
    DOI: 10.1080/13504850210150924
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/13504850210150924&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504850210150924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Jagannathan, Ravi, 1997. "Assessing Specification Errors in Stochastic Discount Factor Models," Journal of Finance, American Finance Association, vol. 52(2), pages 557-590, June.
    2. Trzcinka, Charles A, 1986. "On the Number of Factors in the Arbitrage Pricing Model," Journal of Finance, American Finance Association, vol. 41(2), pages 347-368, June.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    5. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    6. John H. Cochrane, 1999. "Portfolio advice of a multifactor world," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 59-78.
    7. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    8. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    9. repec:bla:jfinan:v:44:y:1989:i:5:p:1247-62 is not listed on IDEAS
    10. Conway, Delores A & Reinganum, Marc R, 1988. "Stable Factors in Security Returns: Identification Using Cross-Validation," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 1-15, January.
    11. Priestley, Richard, 1996. "The arbitrage pricing theory, macroeconomic and financial factors, and expectations generating processes," Journal of Banking & Finance, Elsevier, vol. 20(5), pages 869-890, June.
    12. Conway, Delores A & Reinganum, Marc R, 1988. "Stable Factors in Security Returns: Identification Using Cross-Validation: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 24-28, January.
    13. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Roger D. & Jo, Hoje, 1995. "Data frequency and the number of factors in stock returns," Journal of Banking & Finance, Elsevier, vol. 19(6), pages 987-1003, September.
    2. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    3. Goyal, Amit & Pérignon, Christophe & Villa, Christophe, 2008. "How common are common return factors across the NYSE and Nasdaq?," Journal of Financial Economics, Elsevier, vol. 90(3), pages 252-271, December.
    4. Colin T. Bowers & Chris Heaton, 2013. "What does high-dimensional factor analysis tell us about risk factors in the Australian stock market?," Applied Economics, Taylor & Francis Journals, vol. 45(11), pages 1395-1404, April.
    5. Ray Ball & Gil Sadka & Ronnie Sadka, 2009. "Aggregate Earnings and Asset Prices," Journal of Accounting Research, Wiley Blackwell, vol. 47(5), pages 1097-1133, December.
    6. Chu Zhang, 2009. "Testing the APT with the Maximum Sharpe Ratio of Extracted Factors," Management Science, INFORMS, vol. 55(7), pages 1255-1266, July.
    7. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    8. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    9. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    10. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    11. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    12. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    13. J. Piplack & M. Beine & B. Candelon, 2009. "Comovements of Returns and Volatility in International Stock Markets: A High-Frequency Approach," Working Papers 09-10, Utrecht School of Economics.
    14. Joongyeub Yeo & George Papanicolaou, 2016. "Random matrix approach to estimation of high-dimensional factor models," Papers 1611.05571, arXiv.org, revised Nov 2017.
    15. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    16. Zhuo Chen & Gregory Connor & Robert A Korajczyk, 2018. "A Performance Comparison of Large-n Factor Estimators," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 8(1), pages 153-182.
    17. Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
    18. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    19. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    20. Harding, Matthew C., 2008. "Explaining the single factor bias of arbitrage pricing models in finite samples," Economics Letters, Elsevier, vol. 99(1), pages 85-88, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:10:y:2003:i:2:p:83-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.