IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v72y2018i3p302-302.html
   My bibliography  Save this article

Comment on “What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?”, Frey and Zhang (2017)

Author

Listed:
  • Alan Hutson

Abstract

No abstract is available for this item.

Suggested Citation

  • Alan Hutson, 2018. "Comment on “What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?”, Frey and Zhang (2017)," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 302-302, July.
  • Handle: RePEc:taf:amstat:v:72:y:2018:i:3:p:302-302
    DOI: 10.1080/00031305.2018.1448893
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2018.1448893
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2018.1448893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldman, Matt & Kaplan, David M., 2017. "Fractional order statistic approximation for nonparametric conditional quantile inference," Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
    2. Alan Hutson, 1999. "Calculating nonparametric confidence intervals for quantiles using fractional order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(3), pages 343-353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matt Goldman & David M. Kaplan, 2018. "Non‐parametric inference on (conditional) quantile differences and interquantile ranges, using L‐statistics," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 136-169, June.
    2. David M. Kaplan & Lonnie Hofmann, 2019. "High-order coverage of smoothed Bayesian bootstrap intervals for population quantiles," Working Papers 1914, Department of Economics, University of Missouri, revised 19 Sep 2020.
    3. Kaplan, David M., 2015. "Improved quantile inference via fixed-smoothing asymptotics and Edgeworth expansion," Journal of Econometrics, Elsevier, vol. 185(1), pages 20-32.
    4. David M. Kaplan & Matt Goldman, 2015. "Nonparametric inference on conditional quantile differences and linear combinations, using L-statistics," Working Papers 1503, Department of Economics, University of Missouri.
    5. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
    6. Goldman, Matt & Kaplan, David M., 2017. "Fractional order statistic approximation for nonparametric conditional quantile inference," Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
    7. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    8. Alan Hutson, 2000. "A composite quantile function estimator with applications in bootstrapping," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 567-577.
    9. David M. Kaplan, 2014. "Nonparametric Inference on Quantile Marginal Effects," Working Papers 1413, Department of Economics, University of Missouri.
    10. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    11. Jones, M. C., 2002. "On fractional uniform order statistics," Statistics & Probability Letters, Elsevier, vol. 58(1), pages 93-96, May.
    12. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    13. Reyes-Fuentes, Melisa & del-Valle-Gallegos, Edmundo & Duran-Gonzalez, Julian & Ortíz-Villafuerte, Javier & Castillo-Durán, Rogelio & Gómez-Torres, Armando & Queral, Cesar, 2021. "AZTUSIA: A new application software for Uncertainty and Sensitivity analysis for nuclear reactors," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    14. Hund, Lauren & Schroeder, Benjamin & Rumsey, Kellin & Huerta, Gabriel, 2018. "Distinguishing between model- and data-driven inferences for high reliability statistical predictions," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 201-210.
    15. Su, Steve, 2009. "Confidence intervals for quantiles using generalized lambda distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3324-3333, July.
    16. David M. Kaplan & Matt Goldman, 2013. "IDEAL Quantile Inference via Interpolated Duals of Exact Analytic L-statistics," Working Papers 1315, Department of Economics, University of Missouri.
    17. Sanchez-Saez, F. & Sánchez, A.I. & Villanueva, J.F. & Carlos, S. & Martorell, S., 2018. "Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 19-28.
    18. David M. Kaplan, 2013. "IDEAL Inference on Conditional Quantiles via Interpolated Duals of Exact Analytic L-statistics," Working Papers 1316, Department of Economics, University of Missouri.
    19. Maria E. Frey & Hans C. Petersen & Oke Gerke, 2020. "Nonparametric Limits of Agreement for Small to Moderate Sample Sizes: A Simulation Study," Stats, MDPI, vol. 3(3), pages 1-13, August.
    20. Szilárd Nemes, 2019. "Likelihood Confidence Intervals When Only Ranges Are Available," Stats, MDPI, vol. 2(1), pages 1-7, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:72:y:2018:i:3:p:302-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.