IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v2y2019i1p8-110d203814.html
   My bibliography  Save this article

Likelihood Confidence Intervals When Only Ranges Are Available

Author

Listed:
  • Szilárd Nemes

    (Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden)

Abstract

Research papers represent an important and rich source of comparative data. The change is to extract the information of interest. Herein, we look at the possibilities to construct confidence intervals for sample averages when only ranges are available with maximum likelihood estimation with order statistics (MLEOS). Using Monte Carlo simulation, we looked at the confidence interval coverage characteristics for likelihood ratio and Wald-type approximate 95% confidence intervals. We saw indication that the likelihood ratio interval had better coverage and narrower intervals. For single parameter distributions, MLEOS is directly applicable. For location-scale distribution is recommended that the variance (or combination of it) to be estimated using standard formulas and used as a plug-in.

Suggested Citation

  • Szilárd Nemes, 2019. "Likelihood Confidence Intervals When Only Ranges Are Available," Stats, MDPI, vol. 2(1), pages 1-7, February.
  • Handle: RePEc:gam:jstats:v:2:y:2019:i:1:p:8-110:d:203814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/2/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/2/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hettmansperger, Thomas P. & Sheather, Simon J., 1986. "Confidence intervals based on interpolated order statistics," Statistics & Probability Letters, Elsevier, vol. 4(2), pages 75-79, March.
    2. N. Balakrishnan & T. Li, 2006. "Confidence Intervals for Quantiles and Tolerance Intervals Based on Ordered Ranked Set Samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 757-777, December.
    3. Alan Hutson, 1999. "Calculating nonparametric confidence intervals for quantiles using fractional order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(3), pages 343-353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria E. Frey & Hans C. Petersen & Oke Gerke, 2020. "Nonparametric Limits of Agreement for Small to Moderate Sample Sizes: A Simulation Study," Stats, MDPI, vol. 3(3), pages 1-13, August.
    2. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
    3. Omer Ozturk & N. Balakrishnan, 2009. "Exact two-sample nonparametric test for quantile difference between two populations based on ranked set samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 235-249, March.
    4. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    5. Goldman, Matt & Kaplan, David M., 2017. "Fractional order statistic approximation for nonparametric conditional quantile inference," Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
    6. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    7. Amini, Morteza & Balakrishnan, N., 2013. "Nonparametric meta-analysis of independent samples of records," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 70-81.
    8. Matt Goldman & David M. Kaplan, 2018. "Non‐parametric inference on (conditional) quantile differences and interquantile ranges, using L‐statistics," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 136-169, June.
    9. Lutz Dümbgen & Ehsan Zamanzade, 2020. "Inference on a distribution function from ranked set samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 157-185, February.
    10. Jesse Frey & Yimin Zhang, 2017. "What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 305-309, October.
    11. David M. Kaplan & Lonnie Hofmann, 2019. "High-order coverage of smoothed Bayesian bootstrap intervals for population quantiles," Working Papers 1914, Department of Economics, University of Missouri, revised 19 Sep 2020.
    12. Alan Hutson, 2000. "A composite quantile function estimator with applications in bootstrapping," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 567-577.
    13. Kaplan, David M., 2015. "Improved quantile inference via fixed-smoothing asymptotics and Edgeworth expansion," Journal of Econometrics, Elsevier, vol. 185(1), pages 20-32.
    14. David M. Kaplan & Matt Goldman, 2015. "Nonparametric inference on conditional quantile differences and linear combinations, using L-statistics," Working Papers 1503, Department of Economics, University of Missouri.
    15. Omer Ozturk & N. Balakrishnan, 2009. "An Exact Control-Versus-Treatment Comparison Test Based on Ranked Set Samples," Biometrics, The International Biometric Society, vol. 65(4), pages 1213-1222, December.
    16. Jones, M. C., 2002. "On fractional uniform order statistics," Statistics & Probability Letters, Elsevier, vol. 58(1), pages 93-96, May.
    17. Xinlei Wang & Ke Wang & Johan Lim, 2012. "Isotonized CDF Estimation from Judgment Poststratification Data with Empty Strata," Biometrics, The International Biometric Society, vol. 68(1), pages 194-202, March.
    18. Monika Saini & Ashish Kumar, 2017. "Ratio estimators for the finite population mean under simple random sampling and rank set sampling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 488-492, June.
    19. Al-Omari, Amer Ibrahim, 2012. "Ratio estimation of the population mean using auxiliary information in simple random sampling and median ranked set sampling," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1883-1890.
    20. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:2:y:2019:i:1:p:8-110:d:203814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.