IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v67y2013i3p157-169.html
   My bibliography  Save this article

Better Articulating Normal Curve Theory for Introductory Mathematical Statistics Students: Power Transformations and Their Back-Transformations

Author

Listed:
  • Daniel A. Griffith

Abstract

This article addresses a gap in many, if not all, introductory mathematical statistics textbooks, namely, transforming a random variable so that it better mimics a normal distribution. Virtually all such textbooks treat the subject of variable transformations, which furnishes a nice opportunity to introduce and study this transformation-to-normality topic, a topic students frequently encounter in subsequent applied statistics courses. Accordingly, this article reviews variable power transformations of the Box--Cox type within the context of normal curve theory, as well as addresses their corresponding back-transformations. It presents four theorems and a conjecture that furnish the basics needed to derive equivalent results for all nonnegative values of the Box--Cox power transformation exponent. Results are illustrated with the exponential random variable. This article also includes selected pedagogic tools created with R code.

Suggested Citation

  • Daniel A. Griffith, 2013. "Better Articulating Normal Curve Theory for Introductory Mathematical Statistics Students: Power Transformations and Their Back-Transformations," The American Statistician, Taylor & Francis Journals, vol. 67(3), pages 157-169, August.
  • Handle: RePEc:taf:amstat:v:67:y:2013:i:3:p:157-169
    DOI: 10.1080/00031305.2013.801782
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2013.801782
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2013.801782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel A. Griffith & Yongwan Chun, 2021. "Soil Sample Assay Uncertainty and the Geographic Distribution of Contaminants: Error Impacts on Syracuse Trace Metal Soil Loading Analysis Results," IJERPH, MDPI, vol. 18(10), pages 1-28, May.
    2. Daniel A. Griffith, 2014. "Reply," The American Statistician, Taylor & Francis Journals, vol. 68(1), pages 67-69, February.
    3. Daniel A. Griffith, 2022. "Reciprocal Data Transformations and Their Back-Transforms," Stats, MDPI, vol. 5(3), pages 1-24, July.
    4. Daniel A. Griffith, 2019. "Negative Spatial Autocorrelation: One of the Most Neglected Concepts in Spatial Statistics," Stats, MDPI, vol. 2(3), pages 1-28, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:67:y:2013:i:3:p:157-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.