IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i15d10.1007_s11269-024-03956-z.html
   My bibliography  Save this article

Automatic Detection of Water Consumption Temporal Patterns in a Residential Area in Northen Italy

Author

Listed:
  • Elena Cristiano

    (University of Cagliari)

  • Pietro Biddau

    (University of Cagliari)

  • Andrea Delogu

    (Blue Gold s.r.l)

  • Martina Gandolfi

    (Blue Gold s.r.l)

  • Roberto Deidda

    (University of Cagliari)

  • Francesco Viola

    (University of Cagliari)

Abstract

One of the main challenges for city development is to ensure a sustainable water resource management for the water supply system. A clear identification of the urban water consumption patterns supports policy and decision makers in managing the water resources, satisfying the total demand and, at the same time, reducing losses and identifying potential leakages or other issues in the distribution network. High resolution smart meters have widely shown to be an efficient tool to measure in-pipe water consumption. The collected data can be used to identify water demand patterns at different temporal and spatial scales, reaching the end-uses level. Water consumption patterns at building level can be influenced by multiple factors, such as socio-demographic aspects, seasonality, and house characteristics. The presence of a garden that requires summer irrigation strongly alters the daily consumption pattern. In this framework, we present an innovative approach to automatically detect the presence of garden irrigation, identifying daily average water consumption patterns with and without it. The proposed methodology was tested in a residential area in Northen Italy, where 23 smart meters recorded data at 1-minute resolution for two years. Results show very good performances in distinguishing between days with and without garden irrigation. The derived average normalized water consumption patterns for both scenarios can help decision makers and water managers to regulate the pressure regimes in the distribution network correctly.

Suggested Citation

  • Elena Cristiano & Pietro Biddau & Andrea Delogu & Martina Gandolfi & Roberto Deidda & Francesco Viola, 2024. "Automatic Detection of Water Consumption Temporal Patterns in a Residential Area in Northen Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6213-6228, December.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:15:d:10.1007_s11269-024-03956-z
    DOI: 10.1007/s11269-024-03956-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03956-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03956-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunyang He & Zhifeng Liu & Jianguo Wu & Xinhao Pan & Zihang Fang & Jingwei Li & Brett A. Bryan, 2021. "Future global urban water scarcity and potential solutions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Daniel R. Rondinel-Oviedo & Jaime M. Sarmiento-Pastor, 2020. "Water: consumption, usage patterns, and residential infrastructure. A comparative analysis of three regions in the Lima metropolitan area," Water International, Taylor & Francis Journals, vol. 45(7-8), pages 824-846, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Duan & Yu, Nizhou & Wan, Hong, 2022. "Does water rights trading affect corporate investment? The role of resource allocation and risk mitigation channels," Economic Modelling, Elsevier, vol. 117(C).
    2. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    3. Flores, Francisco & Feijoo, Felipe & DeStephano, Paelina & Herc, Luka & Pfeifer, Antun & Duić, Neven, 2024. "Assessment of the impacts of renewable energy variability in long-term decarbonization strategies," Applied Energy, Elsevier, vol. 368(C).
    4. Liu, Mengyu & Zhou, Xiong & Huang, Guohe & Li, Yongping, 2024. "The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically," LSE Research Online Documents on Economics 124431, London School of Economics and Political Science, LSE Library.
    5. A. L. Hamilton & P. M. Reed & R. S. Gupta & H. B. Zeff & G. W. Characklis, 2024. "Resilient water infrastructure partnerships in institutionally complex systems face challenging supply and financial risk tradeoffs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Hernández, Francisco & Jaime, Marcela & Vásquez, Felipe, 2024. "Nudges versus prices: Lessons and challenges from a water-savings program," Energy Economics, Elsevier, vol. 134(C).
    7. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    8. Beiying Li & Conghe Liu & Jingjing Bai & Yikun Huang & Run Su & Yan Wei & Bin Ma, 2024. "Strategy to mitigate substrate inhibition in wastewater treatment systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    10. Alessio Miatto & Nargessadat Emami & Kylie Goodwin & James West & Mohammad Sadegh Taskhiri & Thomas Wiedmann & Heinz Schandl, 2024. "Australia's circular economy metrics and indicators," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 216-231, April.
    11. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Li, Tan & Qi, Yunyun & Chen, Min & Cao, Jing, 2023. "Balancing crop security and sustainable cropland use: Policy lessons from the Watershed Ecosystem Service Payments in Xin’an River, China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 861-879.
    13. Safiyeh Tayebi & Bakhtiar Feizizadeh & Saeed Esfandi & Banafsheh Aliabbasi & Seyed Ali Alavi & Aliakbar Shamsipour, 2022. "A Neighborhood-Based Urban Water Carrying Capacity Assessment: Analysis of the Relationship between Spatial-Demographic Factors and Water Consumption Patterns in Tehran, Iran," Land, MDPI, vol. 11(12), pages 1-26, December.
    14. Liao, Ziyi & Liu, Minghui & Du, Bowen & Zhou, Haijun & Li, Linchao, 2022. "A temporal and spatial prediction method for urban pipeline network based on deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    15. Xiang Gao & Zhichao Yang & Wen Zhang & Bingcai Pan, 2024. "Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Daniela-Luminita Constantin & Zizi Goschin & Cristina Serbanica, 2023. "Piped water supply and usage and the question of services of general interest: a spatial panel data analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 70(1), pages 187-207, February.
    17. Tudose, Nicu Constantin & Cheval, Sorin & Ungurean, Cezar & Broekman, Annelies & Sanchez-Plaza, Anabel & Cremades, Roger & Mitter, Hermine & Kropf, Bernadette & Davidescu, Serban Octavian & Dinca, Luc, 2022. "Climate services for sustainable resource management: The water—energy—land nexus in the Tărlung river basin (Romania)," Land Use Policy, Elsevier, vol. 119(C).
    18. Cengiz Koç & Yıldırım Bayazıt & Selami Yurdan Özgül, 2023. "Impact of tourists on urban water needs in Marmaris, Türkiye," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8837-8855, August.
    19. Yong Liu & Lihao Wang & Qianhui Ma & Xingtao Xu & Xin Gao & Haiguang Zhu & Ting Feng & Xinyue Dou & Miharu Eguchi & Yusuke Yamauchi & Xun Yuan, 2024. "Simultaneous generation of residue-free reactive oxygen species and bacteria capture for efficient electrochemical water disinfection," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Gabriela Scheibel Cassol & Chii Shang & Alicia Kyoungjin An & Noman Khalid Khanzada & Francesco Ciucci & Alessandro Manzotti & Paul Westerhoff & Yinghao Song & Li Ling, 2024. "Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:15:d:10.1007_s11269-024-03956-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.