IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i11d10.1007_s11269-024-03867-z.html
   My bibliography  Save this article

A Hydrodynamic Model and Data-Driven Evolutionary Multi-Objective Optimization Algorithm Based Optimal Operation Method for Multi-barrage Flood Control

Author

Listed:
  • Xuan Li

    (PowerChina Northwest Engn Corp Ltd
    Xi’an University of Technology)

  • Xiaoping Zhou

    (PowerChina Northwest Engn Corp Ltd)

  • Jingming Hou

    (Xi’an University of Technology)

  • Yuan Liu

    (PowerChina Northwest Engn Corp Ltd)

  • Shuhong Xue

    (PowerChina Northwest Engn Corp Ltd)

  • Huan Ma

    (PowerChina Northwest Engn Corp Ltd)

  • Bowen Su

    (PowerChina Northwest Engn Corp Ltd)

Abstract

The flood control operation of river barrages represents a multi-objective optimization problem with conflicting decision objectives, introducing risks into the decision-making process. Most existing optimization methods for operational rule sets encounter challenges related to the insufficient representation of flood accuracy and prolonged computational duration. Considering these two issues, this study aimed to propose a novel multi-objective barrage optimization operation approach based on a hydrodynamic model and a data-driven evolutionary algorithm. This approach employs a hydrodynamic model to precisely simulate the flood propagation process and provide the required hydraulic characteristics. Utilizing the results provided by the hydrodynamic model as foundational data, a multi-objective particle swarm algorithm was employed to drive the search for Pareto-optimal operational rules. Subsequently, the Kriging model is integrated into the optimization process, wherein only potential nondominated solutions in the offspring population were selected for exact objective function evaluations. This significantly reduced the frequency of calls to the hydrodynamic model, thereby enhancing the efficiency of optimization computations. The proposed approach was applied to a real multi-barrage flood control system for the rivers in the urban city of Chengdu, China. The results indicate that this method can optimize and solve the multi-objective operational rules for barrage flood control with limited computational resources. The obtained Pareto-optimal operational rules also illustrate the trade-off relationships among multiple objectives, suggesting that it is possible to mitigate downstream flood risks at the cost of increasing upstream flood risks, and vice versa. The new method can provide precise guidance for flood control scheduling of barrages during the flood season, enabling decision makers to choose the operation rules according to their own risk preferences.

Suggested Citation

  • Xuan Li & Xiaoping Zhou & Jingming Hou & Yuan Liu & Shuhong Xue & Huan Ma & Bowen Su, 2024. "A Hydrodynamic Model and Data-Driven Evolutionary Multi-Objective Optimization Algorithm Based Optimal Operation Method for Multi-barrage Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4323-4341, September.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03867-z
    DOI: 10.1007/s11269-024-03867-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03867-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03867-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    3. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    5. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    6. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    7. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    9. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    10. Liang Pei & Chunhui Wang & Liying Sun & Lili Wang, 2022. "Temporal and Spatial Variation (2001–2020) Characteristics of Wind Speed in the Water Erosion Area of the Typical Black Soil Region, Northeast China," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    11. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    12. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    13. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    14. Wu, Xu & Kozlowski, Tomasz & Meidani, Hadi, 2018. "Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 422-436.
    15. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    16. Mert Edali & Gönenç Yücel, 2020. "Analysis of an individual‐based influenza epidemic model using random forest metamodels and adaptive sequential sampling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 936-958, November.
    17. Cremona, Marzia A. & Liu, Binbin & Hu, Yang & Bruni, Stefano & Lewis, Roger, 2016. "Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 49-59.
    18. J P C Kleijnen & W C M van Beers, 2013. "Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
    19. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Discussion Paper 2008-95, Tilburg University, Center for Economic Research.
    20. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Madison O. Campbell, 2021. "Incorporation of sea level rise in storm surge surrogate modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 531-563, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03867-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.