IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i6d10.1007_s11269-022-03388-7.html
   My bibliography  Save this article

Systemic Management of Water Resources with Environmental and Climate Change Considerations

Author

Listed:
  • Behnam Sadeghi

    (University of Zabol)

  • Mahmoud Ahmadpour Borazjani

    (University of Zabol)

  • Mostafa Mardani

    (Ramin Agricultural and Natural Resources University)

  • Saman Ziaee

    (University of Zabol)

  • Hamid Mohammadi

    (University of Zabol)

Abstract

River basin management is very varied and challenging due to the competition in water consumption in different parts. Therefore, modeling water resources and uses is complicated, time-consuming, and essential in catchments with a complex hydro system. In the present study, modeling was performed for the southeastern part of the Aras River catchment area located in Iran. In this area, there is intense competition for water due to the implementation of policies to increase the cultivation area and the need to provide environmental water rights, which causes a lack of water supply for some sectors. In this study, water supply and demand in five sub-basins of Aras River were investigated using the WEAP MABIA model. Four separate scenarios, including a reference scenario (S1), the reference scenario with a priority of meeting environmental demands (S2), and climate scenarios (S3, S4) under general circulation models (GCMs) based on the IPCC Sixth Assessment Report (AR6) were produced for the near (2021–2040), middle (2041–2060), and far (2061–2080) future periods. Scenarios S3 and S4 considered the policy of increasing efficiency and the cultivated area to evaluate the response of sub-basins to changes in demand. The simulation results of scenario S1 show that the current water resources provide the existing requirements in wet years but are insufficient in dry years and years of increasing the cultivated area. Water shortage will also rise due to the policy of increasing the cultivated area and the impact of climate change, especially in scenarios S3 and S4. The results also indicated that the rate of lack of environmental water rights and the deficit of three aquifers in the study area will increase significantly in scenarios S3 and S4 in comparison with scenarios S1 and S2, which requires the adoption of appropriate management policies to achieve sustainable water resources for all subsections.

Suggested Citation

  • Behnam Sadeghi & Mahmoud Ahmadpour Borazjani & Mostafa Mardani & Saman Ziaee & Hamid Mohammadi, 2023. "Systemic Management of Water Resources with Environmental and Climate Change Considerations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2543-2574, May.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03388-7
    DOI: 10.1007/s11269-022-03388-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03388-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03388-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K.A. Demertzi & D.M. Papamichail & P.E. Georgiou & D.N. Karamouzis & V.G. Aschonitis, 2014. "Assessment of rural and highly seasonal tourist activity plus drought effects on reservoir operation in a semi-arid region of Greece using the WEAP model," Water International, Taylor & Francis Journals, vol. 39(1), pages 23-34, January.
    2. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    3. N. LeRoy Poff & Casey M. Brown & Theodore E. Grantham & John H. Matthews & Margaret A. Palmer & Caitlin M. Spence & Robert L. Wilby & Marjolijn Haasnoot & Guillermo F. Mendoza & Kathleen C. Dominique , 2016. "Sustainable water management under future uncertainty with eco-engineering decision scaling," Nature Climate Change, Nature, vol. 6(1), pages 25-34, January.
    4. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    5. Mosavi, Seyed Habibollah & Soltani, Shiva & Khalilian, Sadegh, 2020. "Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Jeniffer Mutiga & Shadrack Mavengano & Su Zhongbo & Tsehaie Woldai & Robert Becht, 2010. "Water Allocation as a Planning Tool to Minimise Water Use Conflicts in the Upper Ewaso Ng’iro North Basin, Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3939-3959, November.
    7. Abbas Al-Omari & Saleh Al-Quraan & Adnan Al-Salihi & Fayez Abdulla, 2009. "A Water Management Support System for Amman Zarqa Basin in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3165-3189, December.
    8. Abbas Mirzaei & Mansour Zibaei, 2021. "Water Conflict Management between Agriculture and Wetland under Climate Change: Application of Economic-Hydrological-Behavioral Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 1-21, January.
    9. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    10. Baris Yilmaz & Nilgun Harmancioglu, 2010. "An Indicator Based Assessment for Water Resources Management in Gediz River Basin, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4359-4379, December.
    11. Jan Eliasson, 2015. "The rising pressure of global water shortages," Nature, Nature, vol. 517(7532), pages 6-6, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    2. Huang, Dayan & Liu, Chengyi & Yan, Zehao & Kou, Aiju, 2023. "Payments for Watershed Services and corporate green innovation," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 541-556.
    3. Kong, Yang & He, Weijun & Shen, Juqin & Yuan, Liang & Gao, Xin & Ramsey, Thomas Stephen & Peng, Qingling & Degefu, Dagmawi Mulugeta & Sun, Fuhua, 2023. "Adaptability analysis of water pollution and advanced industrial structure in Jiangsu Province, China," Ecological Modelling, Elsevier, vol. 481(C).
    4. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    5. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    6. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    8. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    9. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    10. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    11. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    12. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    13. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    14. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    15. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    16. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    17. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    18. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    19. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    20. Hong-Wei Liao & Zhong-Cheng Jiang & Hong Zhou & Xiao-Qun Qin & Qi-Bo Huang & Liang Zhong & Zheng-Gong Pu, 2022. "Dissolved Heavy Metal Pollution and Assessment of a Karst Basin around a Mine, Southwest China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03388-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.