IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i1d10.1007_s11269-021-03029-5.html
   My bibliography  Save this article

Calibration of METRIC Modeling for Evapotranspiration Estimation Using Landsat 8 Imagery Data

Author

Listed:
  • Masoud Derakhshandeh

    (Istanbul Gelisim University)

  • Mustafa Tombul

    (Eskişehir Technical University)

Abstract

Water resources management needs efficient tools to estimate the rate of water loss through evapotranspiration (ET). High resolution spatial imagery has provided a valuable source of data which their implementation in well-tuned models has the potential of evapotranspiration rate estimations with satisfactory accuracy. Mapping evapotranspiration at high resolution with internalized calibration (METRIC) is basically an energy balance model which has shown a good performance in different applications. The model needs to be calibrated for various source of spatial data and with the introduction of new empirical correlations for numerous variables which are used in the model, the model is recalibrated for Landsat 8 multispectral image and applied to intensively cultivated agriculture lands in Alpu (Eskisehir, Turkey). In previous studies, the correlations from previous studies were referenced where the procedure was confusing for many users. In this work, a descriptive step by step procedure is also provided. The meteorological 24 h relative ET was then used to spread the instant ET (at image capture time) estimation into daily 24 h estimation. This approach reduces the errors from multiple correlations and to some extent the effect of short variations like partial cloud coverage.

Suggested Citation

  • Masoud Derakhshandeh & Mustafa Tombul, 2022. "Calibration of METRIC Modeling for Evapotranspiration Estimation Using Landsat 8 Imagery Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 315-339, January.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:1:d:10.1007_s11269-021-03029-5
    DOI: 10.1007/s11269-021-03029-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-03029-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-03029-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ortega-Salazar, Samuel & Ortega-Farías, Samuel & Kilic, Ayse & Allen, Richard, 2021. "Performance of the METRIC model for mapping energy balance components and actual evapotranspiration over a superintensive drip-irrigated olive orchard," Agricultural Water Management, Elsevier, vol. 251(C).
    2. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    3. Jinjiao Lian & Mingbin Huang, 2015. "Evapotranspiration Estimation for an Oasis Area in the Heihe River Basin Using Landsat-8 Images and the METRIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5157-5170, November.
    4. Paredes, P. & Pereira, L.S., 2019. "Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation," Agricultural Water Management, Elsevier, vol. 215(C), pages 86-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Chengguang & Chen, Xiaohong & Zhong, Ruida & Wang, Zhaoli, 2022. "Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    5. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    6. Jian Yin & Chesheng Zhan & Wen Ye, 2016. "An Experimental Study on Evapotranspiration Data Assimilation Based on the Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5263-5279, November.
    7. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    8. Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Liu, Zhihe & Agathokleous, Evgenios & Yang, Xiumei & Hu, Wei & Clothier, Brent, 2023. "Short–term forecasting of daily evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Lima, Carlos Eduardo Santos de & Costa, Valéria Sandra de Oliveira & Galvíncio, Josiclêda Domiciano & Silva, Richarde Marques da & Santos, Celso Augusto Guimarães, 2021. "Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region," Agricultural Water Management, Elsevier, vol. 250(C).
    10. Jie Zhao & Zongxue Xu & Vijay P. Singh & Depeng Zuo & Mo Li, 2016. "Sensitivity of Potential Evapotranspiration to Climate and Vegetation in a Water-Limited Basin at the Northern Edge of Tibetan Plateau," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4667-4680, October.
    11. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Jinglin Zhang & Wei Zhang & Dongsheng Li & Xueliang Chen & Wei Zhang, 2022. "Regime Shifts in the Hexi Oases over the Past Three Decades: The Case of the Linze Oasis in the Middle Reaches of the Heihe River," Sustainability, MDPI, vol. 14(23), pages 1-13, December.
    13. Shirin Moradi & Thomas Heinze & Jasmin Budler & Thanushika Gunatilake & Andreas Kemna & Johan Alexander Huisman, 2021. "Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability," Land, MDPI, vol. 10(4), pages 1-23, April.
    14. Nguru, Wilson & Abera, Wuletawu & Ouedraogo, Issa & Chege, Christine & Kane, Babacar & Bougouma, Katiana & Mwongera, Caroline, 2023. "Spatial estimation of flood residual water cultivation (FRWC) potential for food security in Sédhiou and Tambacounda regions of Sénégal," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Ayyad, Saher & Karimi, Poolad & Langensiepen, Matthias & Ribbe, Lars & Rebelo, Lisa-Maria & Becker, Mathias, 2022. "Remote sensing assessment of available green water to increase crop production in seasonal floodplain wetlands of sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 269(C).
    16. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Bellido-Jiménez, Juan A. & Estévez, Javier & García-Marín, Amanda P., 2022. "A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Ferreira, Lucas Borges & da Cunha, Fernando França & Fernandes Filho, Elpídio Inácio, 2022. "Exploring machine learning and multi-task learning to estimate meteorological data and reference evapotranspiration across Brazil," Agricultural Water Management, Elsevier, vol. 259(C).
    19. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    20. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:1:d:10.1007_s11269-021-03029-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.