Analysis of the isolation valve system in water distribution networks using the segment graph
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-022-03213-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Enrico Creaco & Marco Franchini & Stefano Alvisi, 2010. "Optimal Placement of Isolation Valves in Water Distribution Systems Based on Valve Cost and Weighted Average Demand Shortfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4317-4338, December.
- Shuang, Qing & Zhang, Mingyuan & Yuan, Yongbo, 2014. "Node vulnerability of water distribution networks under cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 132-141.
- Alessandro Pagano & Chris Sweetapple & Raziyeh Farmani & Raffaele Giordano & David Butler, 2019. "Water Distribution Networks Resilience Analysis: a Comparison between Graph Theory-Based Approaches and Global Resilience Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2925-2940, June.
- Agathoklis Agathokleous & Chrystalleni Christodoulou & Symeon E. Christodoulou, 2017. "Topological Robustness and Vulnerability Assessment of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4007-4021, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Richárd Wéber & Tamás Huzsvár & Ákos Déllei & Csaba Hős, 2023. "Criticality of Isolation Valves in Water Distribution Networks with Hydraulics and Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2181-2193, March.
- Alessandro Pagano & Raffaele Giordano & Ivan Portoghese, 2022. "A Pipe Ranking Method for Water Distribution Network Resilience Assessment Based on Graph-Theory Metrics Aggregated Through Bayesian Belief Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5091-5106, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yu, Juanya & Sharma, Neetesh & Gardoni, Paolo, 2024. "Functional connectivity analysis for modeling flow in infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Tornyeviadzi, Hoese Michel & Owusu-Ansah, Emmanuel & Mohammed, Hadi & Seidu, Razak, 2022. "A systematic framework for dynamic nodal vulnerability assessment of water distribution networks based on multilayer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Xiang He & Yongbo Yuan, 2019. "A Framework of Identifying Critical Water Distribution Pipelines from Recovery Resilience," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3691-3706, September.
- Mingyuan Zhang & Juan Zhang & Gang Li & Yuan Zhao, 2020. "A Framework for Identifying the Critical Region in Water Distribution Network for Reinforcement Strategy from Preparation Resilience," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
- C. Giudicianni & A. Nardo & R. Greco & A. Scala, 2021. "A Community-Structure-Based Method for Estimating the Fractal Dimension, and its Application to Water Networks for the Assessment of Vulnerability to Disasters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1197-1210, March.
- Wu, Yipeng & Chen, Zhilong & Gong, Huadong & Feng, Qilin & Chen, Yicun & Tang, Haizhou, 2021. "Defender–attacker–operator: Tri-level game-theoretic interdiction analysis of urban water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Tornyeviadzi, Hoese Michel & Neba, Fabrice Abunde & Mohammed, Hadi & Seidu, Razak, 2021. "Nodal vulnerability assessment of water distribution networks: An integrated Fuzzy AHP-TOPSIS approach," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
- Wang, Fei & Zheng, Xia-zhong & Li, Nan & Shen, Xuesong, 2019. "Systemic vulnerability assessment of urban water distribution networks considering failure scenario uncertainty," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
- Alessandro Pagano & Raffaele Giordano & Ivan Portoghese, 2022. "A Pipe Ranking Method for Water Distribution Network Resilience Assessment Based on Graph-Theory Metrics Aggregated Through Bayesian Belief Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5091-5106, October.
- Agathoklis Agathokleous & Chrystalleni Christodoulou & Symeon E. Christodoulou, 2017. "Topological Robustness and Vulnerability Assessment of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4007-4021, September.
- Jeongwook Choi & Doosun Kang, 2020. "Improved Hydraulic Simulation of Valve Layout Effects on Post-Earthquake Restoration of a Water Distribution Network," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
- Bistouni, Fathollah & Jahanshahi, Mohsen, 2015. "Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 128-146.
- Chi Zhang & Yuntao Wang & Yu Li & Wei Ding, 2017. "Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
- Augutis, Juozas & Jokšas, Benas & Krikštolaitis, Ričardas & Urbonas, Rolandas, 2016. "The assessment technology of energy critical infrastructure," Applied Energy, Elsevier, vol. 162(C), pages 1494-1504.
- Zahra Pouri & Morteza Heidarimozaffar, 2022. "Spatial Analysis and Failure Management in Water Distribution Networks Using Fuzzy Inference System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1783-1797, April.
- Xi Hu & Jim W. Hall & Peijun Shi & Wee Ho Lim, 2016. "The spatial exposure of the Chinese infrastructure system to flooding and drought hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1083-1118, January.
- Jia, Rui & Du, Kun & Song, Zhigang & Xu, Wei & Zheng, Feifei, 2024. "Scenario reduction-based simulation method for efficient serviceability assessment of earthquake-damaged water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
- Caldarola, Fabio & Maiolo, Mario, 2021. "A mathematical investigation on the invariance problem of some hydraulic indices," Applied Mathematics and Computation, Elsevier, vol. 409(C).
- Xi Hu & Jim W. Hall & Peijun Shi & Wee Lim, 2016. "The spatial exposure of the Chinese infrastructure system to flooding and drought hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1083-1118, January.
- E. Creaco & M. Franchini & S. Alvisi, 2012. "Evaluating Water Demand Shortfalls in Segment Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2301-2321, June.
More about this item
Keywords
Isolation valve system; Graph segment; Water distribution networks; Relevance-based betweenness centrality; Complex network theory; Failure event;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:10:d:10.1007_s11269-022-03213-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.