IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i14d10.1007_s11269-021-02979-0.html
   My bibliography  Save this article

Implication of Remote Sensing Data under GIS Environment for Appraisal of Irrigation System Performance

Author

Listed:
  • Sultan Ahmad Rizvi

    (Soil and Water Conservation Research Institute)

  • Afeef Ahmad

    (Department of Civil Engineering)

  • Muhammad Latif

    (CEWRE, University of Engineering and Technology)

  • Abdul Sattar Shakir

    (Faculty of Civil Engineering University of Engineering and Technology)

  • Aftab Ahmad Khan

    (Global Climate Impact Studies Center (GCISC) Ministry of Climate Change)

  • Waqas Naseem

    (Soil and Water Conservation Research Institute)

  • Muhammad Riaz Gondal

    (Soil and Water Conservation Research Institute)

Abstract

Poor irrigation management is a common issue of irrigated agriculture. Assessment of irrigation system performance is essential to improve the irrigation system, which requires real-time data. Satellite data has been found the best alternate. This manuscript presents a methodology to assess irrigation system performance using combination of satellite and ground data. The developed methodology was applied on a canal system of Punjab Pakistan. High resolution satellite images were processed to images of normalized difference vegetation index (NDVI), evaporative fraction (EF) and evapotranspiration (ET). These images in combination with ground data provided information on pixel to pixel vegetated area, water availability/ requirement consequently the irrigation system performance indicators. The results revealed that potential water requirement of the area was 401.66 million cubic meters (MCM) and available canal water supply was 247.14 MCM, thus indicating shortage of 38%. Adequacy of the system was found to be 74% while its reliability varied from 35–73%. Average coefficient of variance (Cv) was found 0.43 showing poor reliability of the system. Performance in equity terms revealed that head areas of irrigation channels were receiving more water supplies than the tail areas. Strong correlation was found between crop yields and water supplies i.e., crop yield was strongly dependent on water supplied (R2 = 0.80).

Suggested Citation

  • Sultan Ahmad Rizvi & Afeef Ahmad & Muhammad Latif & Abdul Sattar Shakir & Aftab Ahmad Khan & Waqas Naseem & Muhammad Riaz Gondal, 2021. "Implication of Remote Sensing Data under GIS Environment for Appraisal of Irrigation System Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4909-4926, November.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02979-0
    DOI: 10.1007/s11269-021-02979-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02979-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02979-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    2. Sakthivadivel, R. & Thiruvengadachari, S. & Amerasinghe, U. & Bastiaanssen, W. G. M. & Molden, D., 1999. "Performance evaluation of the Bhakra Irrigation System, India, using remote sensing and GIS techniques," IWMI Research Reports H024199, International Water Management Institute.
    3. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    4. Alexandridis, T. & Asif, S. & Ali, S., 1999. "Water performance indicators using satellite imagery for the Fordwah Eastern Sadiqia (South) Irrigation and Drainage Project," IWMI Research Reports H024895, International Water Management Institute.
    5. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    6. Kalpana Kochhar & Catherine A Pattillo & Yan M Sun & Nujin Suphaphiphat & Andrew J Swiston & Robert Tchaidze & Benedict J. Clements & Stefania Fabrizio & Valentina Flamini & Laure Redifer & Harald Fin, 2015. "Is the Glass Half Empty Or Half Full?; Issues in Managing Water Challenges and Policy Instruments," IMF Staff Discussion Notes 15/11, International Monetary Fund.
    7. Akbari, Mehdi & Toomanian, Norair & Droogers, Peter & Bastiaanssen, Wim & Gieske, Ambro, 2007. "Monitoring irrigation performance in Esfahan, Iran, using NOAA satellite imagery," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 99-109, March.
    8. Ms. Kalpana Kochhar & Ms. Catherine A Pattillo & Ms. Yan M Sun & Mrs. Nujin Suphaphiphat & Mr. Andrew J Swiston & Mr. Robert Tchaidze & Mr. Benedict J. Clements & Ms. Stefania Fabrizio & Valentina Fla, 2015. "Is the Glass Half Empty Or Half Full?: Issues in Managing Water Challenges and Policy Instruments," IMF Staff Discussion Notes 2015/011, International Monetary Fund.
    9. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umer Masood & Saif Haider & Muhammad Rashid & Mohammed Suleman Aldlemy & Chaitanya B. Pande & Bojan Đurin & Raad Z. Homod & Fahad Alshehri & Ismail Elkhrachy, 2023. "Quantifying the Impacts of Climate and Land Cover Changes on the Hydrological Regime of a Complex Dam Catchment Area," Sustainability, MDPI, vol. 15(21), pages 1-28, October.
    2. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    3. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    4. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    6. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    7. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    8. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    9. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    10. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    11. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    12. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    13. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    14. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    15. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    16. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    17. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    18. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    19. Hong-Wei Liao & Zhong-Cheng Jiang & Hong Zhou & Xiao-Qun Qin & Qi-Bo Huang & Liang Zhong & Zheng-Gong Pu, 2022. "Dissolved Heavy Metal Pollution and Assessment of a Karst Basin around a Mine, Southwest China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    20. Lyazzat Nugumanova & Miriam Frey & Natalya Yemelina & Stanislav Yugay, 2017. "Environmental Problems and Policies in Kazakhstan: Air pollution, waste and water," Working Papers 366, Leibniz Institut für Ost- und Südosteuropaforschung (Institute for East and Southeast European Studies).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02979-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.